Search Results

You are looking at 1 - 10 of 13 items for

  • Author: Irena Giełwanowska x
Clear All Modify Search
Open access

Irena Giełwanowska and Wioleta Kellmann−Sopyła

Abstract

The embryology of two species, Deschampsia antarctica, a native species, and Poa annua, an alien species in the Antarctic we studied. Flowering buds of plants growing in their natural habitats on King George Island and generative tissues of both plant species grown in a greenhouse were analyzed. Adaptations to autogamy and anemogamy were observed in the flower anatomy of both species. The microsporangia of the evaluated grasses produce a small number of three−celled pollen grains. Numerous pollen grains do not leave the microsporangium and germinate in the thecae. Deschampsia antarctica and P. annua plants harvested in Antarctica developed a particularly small number of microspores in pollen chambers. In D. antarctica, male gametophytes were produced at a faster rate: generative cells in pollen did not become detached from the wall of the pollen grain, they were not embedded in the cytoplasm of vegetative cells, and they divided into two sperm cells situated close to the wall. The monosporous Polygonum type of embryo sac development was observed in the studied species. The egg apparatus had typical polarization, and the filiform apparatus did not develop in synergids. Large antipodals with polyploidal nuclei were formed in the embryo sacs of D. antarctica and P. annua. Poa annua was characterized by numerous antipodal cells which formed antipodal tissue in the chalazal region of the embryo sac. Three distinct antipodals with atypical, lateral position in the vicinity of the egg apparatus were observed in D. antarctica. The diaspores of the investigated grass species were characterized by small size, low weight and species-specific primary and secondary sculpture of the testa and caryopsis coat.

Open access

Irena Giełwanowska and Maria Olech

The paper describes anatomical and physiological features of photobionts and mycobionts in Bryoria forsteri Olech & Bystrek, Caloplaca regalis (Vain.) Zahlbr., Cetraria aculeata (Schreb.) Fr., Ramalina terebrata Hook f. & Taylor, Sphaerophorus globosus (Huds.) Vain. and Usnea antarctica Du Rietz, collected in the Antarctic under varied weather conditions. Green algae from the genera Lobosphaera and Trebouxia were gathered in depressions of the cortex under the more resistant mycobiont hyphae. In photobiont cells a large amount of highly osmiophilic electron-dense PAS-negative material, lipid-like in character, was of particular interest. Similar material also filled certain areas of the aerial apoplast. A star-shaped chromatophore with central and lateral pyrenoids encompassed most of the photobiont protoplast in all the studied species. Regularly arranged thylakoids with evenly widened lumina along their entire length and osmiophilic lipid droplets adhering to their outer surfaces were visible within the pyrenoid. Inside the chloroplast, large protein inclusions tightly joined with the thylakoids were observed. The mycobionts were closely attached to each other another and with the photobionts by means of an outer osmiophilic wall layer, and formed intramural haustoria. Their protoplasts were filled with PAS-positive polysaccharides and a large amount of lipid-like substances. The photobionts were physiologically active and produced a large amount of electron-dense osmiophilic material, and PAS-positive starch grains were visible around their pyrenoids in the thalli collected in different weather conditions. The permanent reserves of nutritive materials deposited in the thalli enable these organisms to quickly begin and continue indispensable physiological processes in the extreme Antarctic conditions.

Open access

Irena Giełwanowska, Marta Pastorczyk and Wioleta Kellmann-Sopyła

Influence of Environmental Changes on Physiology and Development of Polar Vascular Plants

Polar vascular plants native to the Arctic and the Antarctic geobotanical zone have been growing and reproducing effectively under difficult environmental conditions, colonizing frozen ground areas formerly covered by ice.

Our macroscopic observations and microscopic studies conducted by means of a light microscope (LM) and transmission electron microscope (TEM) concerning the anatomical and ultrastructural observations of vegetative and generative tissue in Cerastium arcticum, Colobanthus quitensis, Silene involucrata, plants from Caryophyllaceae and Deschampsia antarctica, Poa annua and Poa arctica, from Poaceae family. In the studies, special attention was paid to plants coming from diversity habitats where stress factors operated with clearly different intensity. In all examinations plants, differences in anatomy were considerable. In Deschampsia antarctica the adaxial epidermis of hairgrass leaves from a humid microhabitat, bulliform cells differentiated. Mesophyll was composed of cells of irregular shapes and resembled aerenchyma. The ultrastructural observations of mesophyll in all plants showed tight adherence of chloroplasts, mitochondria and peroxisomes, surface deformations of these organelles and formation of characteristic outgrowths and pocket concavities filled with cytoplasm with vesicles and organelles by chloroplasts. In reproduction biology of examined Caryophyllaceae and Poaceae plants growing in natural conditions, in the Arctic and in the Antarctic, and in a greenhouse in Olsztyn showed that this plant develops two types of bisexual flowers. Almost all ovules developed and formed seeds with a completely differentiated embryo both under natural conditions in the Arctic and the Antarctic and in a greenhouse in Olsztyn.

Open access

Wioleta Kellmann-Sopyła, Marta Pastorczyk and Irena Giełwanowska

Influence of Environmental Factors on Reproduction of Polar Vascular Plants

In the last few decades, changes of reproductive pattern of polar vascular plants have been observed, for the benefit of generative propagation. The reasons for this phenomenon are attributed to intensively following climate change, whose effects may be various. Warming causes the production of the greater number of generative structures, with higher quality. Our macroscopic observations conducted on specimens of polar vascular plants, cultivated in University of Warmia and Mazury greenhouse, indicate that the effect of temperature increase on flower development and seed formation is inconsistent. On the other hand enhanced levels of UV-B radiation can negatively affect seedlings. The complexity of the climate change causes tremendous difficulties in defining a clear and unquestioned way of modifications during the reproductive phase of the described plants.

Open access

Ewa Szczuka, Irena Giełwanowska, Irena Pidek, Aleksandra Seta, Marcin Domaciuk and Wiesław Kołodziejski

Pollen of the Antarctic plants Colobanthus quitensis and Deschampsia antarctica and its representation in moss polsters

Formation, structure, and representation in moss polsters of pollen grains of Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. (the only two native flowering plants growing in Antarctica) were investigated by means of light microscopy. Microsporogenesis and male gametogenesis of both investigated plant species proceded in the way typical of other angiosperms. C. quitensis forms spherical, two-nuclear pollen grains enveloped by the thick polyporate sporoderm. Pollen grains of D. antarctica are three-nuclear, and their sporoderm contains one aperture. Both investigated species form chasmogamic and cleistogamic flowers. In moss samples, collected according to Pollen Monitoring Programme method, the local element - Poaceae and Colobanthus prevailed. The Poaceae pollen type includes mostly Deschampsia, but other grains, such as Poa annua, which was reported to grow in the vicinity of H. Arctowski Station, cannot be excluded. Among long-distance elements, Nothofagus pollen prevailed. One to seven pollen grains of this tree were found in each sample, which had been transported by strong westerly winds from southern South America. All the examined spectra also contained numerous fungal spores and other unidentified (probably non-sporomorphous) elements.

Open access

Wioleta Kellmann-Sopyła, Justyna Koc, Ryszard J. Górecki, Marcin Domaciuk and Irena Giełwanowska

Abstract

The embryology of three polar flowering plants of the family Caryophyllaceae was studied using the methods and techniques of the light, normal and fluorescence microscopes, and the electron microscopes, scanning and transmission. The analyzed species were Colobanthus quitensis of West Antarctic (King George Island, South Shetlands Islands) as well as Cerastium alpinum and Silene involucrata of the Arctic (Spitsbergen, Svalbard). In all evaluated species, flowering responses were adapted to the short Arctic and Australian summer, and adaptations to autogamy and anemogamy were also observed. The microsporangia of the analyzed plants produced small numbers of microspore mother cells that were differentiated into a dozen or dozens of trinucleate pollen grains. The majority of mature pollen grains remained inside microsporangia and germinated in the thecae. The monosporous Polygonum type (the most common type in angiosperms) of embryo sac development was observed in the studied species. The egg apparatus had an egg cell and two synergids with typical polarization. A well-developed filiform apparatus was differentiated in the micropylar end of the synergids. In mature diaspores of the analyzed plants of the family Caryophyllaceae, a large and peripherally located embryo was, in most part, adjacent to perisperm cells filled with reserve substances, whereas the radicle was surrounded by micropylar endosperm composed of a single layer of cells with thick, intensely stained cytoplasm, organelles and reserve substances. The testae of the analyzed plants were characterized by species-specific primary and secondary sculpture, and they contained large amounts of osmophilic material with varied density. Seeds of C. quitensis, C. alpinum and S. involucrata are very small, light and compact shaped.

Open access

Marcin Domaciuk, Agata Leszczuk, Ewa Szczuka, Wioleta Kellmann-Sopyła, Justyna Koc and Irena Giełwanowska

Abstract

The development of megasporocytes and the functional megaspore formation in Deschampsia antarctica were analyzed with the use of microscopic methods. A single archesporial cell was formed directly under the epidermis in the micropylar region of the ovule without producing a parietal cell. In successive stages of development, the meiocyte was transformed into a megaspore tetrad after meiosis. Most megaspores were arranged in a linear fashion, but some tetrads were T-shaped. Only one of the 60 analyzed ovules contained a cell in the direct proximity of the megasporocyte, which could be an aposporous initial. Most of the evaluated D. antarctica ovules featured monosporic embryo sacs of the Polygonum type. Approximately 30% of ovules contained numerous megaspores that were enlarged. The megaspores were located at chalazal and micropylar poles, and some ovules featured two megaspores – terminal and medial – in the chalazal region, or even three megaspores at the chalazal pole. In those cases, the micropylar megaspore was significantly smaller than the remaining megaspores, and it did not have the characteristic features of functional megaspores. Meiocytes and megaspores of D. antarctica contained polysaccharides that were detectable by PAS-reaction and aniline blue staining. Starch granules and cell walls of megasporocytes, megaspores and nucellar cells were PAS-positive. Fluorescent callose deposits were identified in the micropylar end of the megasporocytes. During meiosis and after its completion, thick callose deposits were also visible in the periclinal walls and in a small amount in the anticlinal walls of megaspores forming linear and T-shaped tetrads. Callose deposits fluorescence was not observed in the walls of the nucellar cells.

Open access

Irena Giełwanowska, Marta Pastorczyk, Maja Lisowska, Michał Węgrzyn and Ryszard J. Górecki

Abstract

This study investigated leaf mesophyll cells of Caryophyllaceae plants growing in polar regions – Cerastium alpinum and Silene involucrata from the Hornsund region of Spitsbergen island (Svalbard Archipelago, Arctic), and Colobanthus quitensis from the Admiralty Bay region on King George Island (South Shetland Islands, West Antarctic). Ultrastructural changes were analyzed in mesophyll protoplasts of plants growing in natural Arctic and Antarctic habitats and plants grown in a greenhouse, including plants exposed to short-term cold stress under semi-controlled conditions. Cell organelles of plants growing in natural polar habitats and greenhouse-grown plants were characterized by significant morphological plasticity. Chloroplasts of plants studied in this work formed variously shaped protrusions and invaginations that visibly increased the contact area between adjacent cell compartments and reduced the distance between organelles. S. involucrata plants grown under greenhouse conditions, tested by us in this work, were characterized by highly dynamic cell nuclei with single or multiple invaginations of the nuclear membrane and the presence of channels and cisternae filled with cytoplasm and organelles. Crystalline inclusion proteins were observed in the cell nuclei of C. quitensis between nuclear membranes and in the direct proximity of heterochromatin. Our study revealed significant conformational dynamics of organelles, manifested by variations in the optical density of matrices, membranes and envelopes, in particular in C. quitensis, which could suggest that the analyzed Caryophyllaceae taxa are well adapted to severe climate and changing conditions in polar regions.

Open access

Piotr Androsiuk, Katarzyna Chwedorzewska, Kamil Szandar and Irena Giełwanowska

Abstract

Antarctic pearlwort (Colobanthus quitensis) is one of the flowering plant species considered native to maritime Antarctica. Although the species was intensively analyzed towards its morphological, anatomical and physiological adaptation to local environment, its genetic variability is still poorly studied. In the presented study, a recently developed retrotransposon-based DNA marker system (inter Primer Binding Site – iPBS) was applied to assess the genetic diversity and differentiation of C. quitensis populations from King George Island (South Shetland Islands, West Antarctic). A total of 143 scoreable bands were detected using 7 iPBS primers among 122 plant specimens representing 8 populations. 55 (38.5%) bands were found polymorphic, with an average of 14.3% polymorphic fragments per primer. Nine of all observed fragments were represented as a private bands deployed unevenly among populations. Low genetic diversity (on average He = 0.040 and I = 0.061) and moderate population differentiation (FST = 0.164) characterize the analyzed material. Clustering based on PCoA revealed, that the populations located on the edges of the study area diverge from the central populations. The pattern of population differentiation corresponds well with their geographic location and the characteristics of the sampling sites. Due to the character of iPBS markers, the observed genetic variability of populations may be explained by the genome rearrangements caused by mobilization of mobile genetic elements in the response to various stress factors. Additionally, this study demonstrates the usefulness of iPBS markers for genetic diversity studies in wild species.

Open access

Irena Giełwanowska, Anna Bochenek, Ewa Gojło, Ryszard Görecki, Wioleta Kellmann, Marta Pastorczyk and Ewa Szczuka

Biology of generative reproduction of Colobanthus quitensis (Kunth) Bartl. from King George Island, South Shetland Islands

Our macroscopic observations and microscopic studies conducted by means of a light microscope (LM) and transmission electron microscope (TEM) concerning the re-production biology of Colobanthus quitensis (Caryophyllaceae) growing in natural conditions in the Antarctic and in a greenhouse in Olsztyn (northern Poland) showed that this plant develops two types of bisexual flowers: opening, chasmogamous flowers and closed, cleistogamous ones. Cleistogamy was caused by a low temperature, high air humidity and strong wind. A small number of microspores differentiated in the microsporangia of C. quitensis, which is typical of cleistogamous species. Microsporocytes, and later microspores, formed very thick callose walls. More than twenty spheroidal, polypantoporate pollen grains differentiated in the microsporangium. They germinated on the surface of receptive cells on the dry stigma of the gynoecium or inside the microsporangium. A monosporic embryo sac of the Polygonum type differentiated in the crassinucellar ovule. During this differentiation the nucellus tissue formed and stored reserve materials. In the development of generative cells, a male germ unit (MGU) with differentiated sperm cells was observed. The smaller cell contained mainly mitochondria, and the bigger one plastids. In the process of fertilization in C. quitensis only one nucleus of the sperm cell, without cytoplasm fragments, entered the egg cell, and the proembryo developed according to the Caryophyllad type. Almost all C. quitensis ovules developed and formed perispermic seeds with a completely differentiated embryo both under natural conditions in the Antarctic and in a green-house in Olsztyn.