Search Results

1 - 7 of 7 items

  • Author: Ildikó Matušíková x
Clear All Modify Search
The Activity of Cell-Wall Modifying β-1,3-Glucanases in Soybean Grown in Presence of Heavy Metals

Abstract

Cell walls represent the first barrier that can prevent the entrance of toxic heavy metals into plants. The composition and the flexibility of the cell wall are regulated by different enzymes. The ß-1,3-glucanases control the degradation of the polysaccharide callose as a flexible regulation mechanism of cell wall permeability and/or its ability to bind metals under stress conditions. The profile and activity of ß-1,3-glucanases in the presence of heavy metals, however, has rarely been studied. Here we studied these enzymes in four soybean varieties (Glycine max) grown in the presence of cadmium ions. These analyses revealed three acidic and one basic enzyme isoforms in each soybean variety, but only two of the acidic isoforms in the variety Moravians were substantially responsive to the presence of Cd2+. Since the responses of certain glucanases were detected mainly in the varieties sensitive to metal and accumulating high amounts of metals, we assume their role in the defense rather than strategic metal sequestration.

Open access
Perception of biotech trees by Slovak university students – a comparative survey

Abstract

Acceptance of genetically modified plants is restricted in EU by legislation, while the attitude of public is not favourable as well. Surveys show that knowledge about GM plants is getting increased. Newly developed strategies on GM safety for environment can be a crucial aspect for the (partial) acceptance in future. GM trees as non-edible plants might appear as more admissible, however, are relatively rarely discussed. We performed a comparative survey on knowledge and perception of GM forest trees among students at four Slovak universities. We also compared their responses between as well as with the outcome of similar cross-country survey in frames of the COST Action FP0905. The results point to very similar attitude of Slovak students when compared with students from other countries, no significant difference between responses of males and females, but also influence of age as well as orientation of their study (natural sciences vs. economy) on view of GM tree safety and placing on the market.

Open access
Beta-1,3-Glucanase Activities in Wheat and Relative Species

Abstract

The (1,3)-β-D-glucan also referred to as callose is a main component of cell walls of higher plants. Many physiological processes are associated with the changes in callose deposition. Callose is synthesised by the callose synthase complex while its degradation is regulated by the hydrolytic enzymes β-1,3-glucanases. The latter one specifically degrade (1,3)-β-D-glucans. This work is aimed to study β-1,3-glucanase activities in the leaves of plants at two leaf stage in two diploids (Agilops tauschii, Triticum monococcum L.), four tetraploids (Ae. cylindrica, Ae. triuncialis, T. araraticum, T. dicoccum) and two hexaploids (T. aestivum L, T. spelta L.). The leaves were subjected to qualitative and quantitative β-1,3-glucanase activity assays. Our results showed that the total β-1,3-glucanase activities were variable and genotype dependent. No significant correlation between β-1,3-glucanase activities and ploidy level was observed. The gel activity assays revealed a single fraction of ~52 kDa Glu1 that was found in all genotypes. The Glu1 fraction corresponds to a single or two acidic Glu isoforms in dependence on genotype. However, none of the acidic Glu fractions can be assigned as a specific for di-, tetra- or hexaploid genotypes. A single basic GluF isoform was detected and found as present in all genotypes.

Open access
Variable dynamics of cadmium uptake and allocation in four soybean cultivars

Abstract

Cadmium is a serious environmental pollutant and its uptake by plant represents a serious health risk. Uptake, accumulation as well as sensitivity of soybean plants to metals have been shown to vary with genotype, while the dynamics of this uptake has rarely been studied. Here we studied the uptake and accumulation of Cd2+ ions in different parts of soybean plants of four cultivars Moravians, Gallec, Kent and Cardiff. The plants at early developmental stage were immersed in Hoagland nutrient solution in the presence or absence of 50 mg.L−1 and the isotope of 109Cd2+ to monitor its accumulation continuously at 24 h intervals for 10 days. Our results showed that the uptake rate varied among the cultivars, being the highest in roots of the cv. Moravians and the lowest in the cv. Gallec. We also observed a non-even distribution of radioactivity within the entire plants of individual cultivars. The most of Cd2+ isotope was translocated into primary leaves and leaves in the cvs. Kent and Moravians; on the contrary, relatively less in the cvs. Cardiff and Gallec. The results were fitted with genetic potential, growth as well as defense parameters such as proline accumulation. Combining uptake dynamics and biochemical data are indicative for different tolerance strategies of soybeans.

Open access
In Vitro Regeneration Potential of Seven Commercial Soybean Cultivars (Glycine max L.) for Use in Biotechnology

Abstract

This work is aimed to evaluate in vitro regeneration potential of seven commercial soybean varieties Bohemians, Cardiff, Gallec, Merlin, Moravians, Naya and Silensia (Glycine max L.) cultivated in Central Europe. Our results showed the half-seeds could be effectively used as an explant source for all tested cultivars. The regeneration was initiated on the media containing growth regulators 1.67 mg.l-1 BAP and 0.25 mg.l-1 GA3. Within the first five days culture, green chlorophyll-containing explants were observed with frequency from 18.3% to 55.9%. Two weeks later, the explants responded by production of calli with the efficiency up to 83.0%. First shoots appeared after 2–3 weeks of subculture on the media. The soybean regeneration showed to be genotype-dependent with variable efficiencies from 5.7% (cv. Naya) to 37.7% (cv. Gallec). The cultivars Cardiff, Merlin and Gallec appear to be the most promising candidates for further biotechnological use. Application of antioxidants such as L-cysteine, dithiothreitol and sodium thiosulfate does not have effect on the explant regeneration for the first five days.

Open access
Imaging of photoassimilates transport in plant tissues by positron emission tomography

Abstract

The current findings show that positron emission tomography (PET), primarily developed for medical diagnostic imaging, can be applied in plant studies to analyze the transport and allocation of wide range of compounds labelled with positronemitting radioisotopes. This work is focused on PET analysis of the uptake and transport of 2-deoxy-2-fluoro[18F]-D-glucose (2-[18F]FDG), as a model of photoassimilates, in tissues of giant reed (Arundo donax L. var. versicolor) as a potential energy crop. The absorption of 2-[18F]FDG and its subsequent transport in plant tissues were evaluated in both acropetal and basipetal direction as well. Visualization and quantification of the uptake and transport of 2-[18F]FDG in plants immersed with the root system into a 2-[18F]FDG solution revealed a significant accumulation of 18F radioactivity in the roots. The transport rate in plants was increased in the order of plant exposure through: stem > mechanically damaged root system > intact root system. PET analysis in basipetal direction, when the plant was immersed into the 2-[18F]FDG solution with the cut area of the leaf of whole plant, showed minimal translocation of 2-[18F]FDG into the other plant parts. The PET results were verified by measuring the accumulated radioactivity of 18F by direct gamma-spectrometry.

Open access
Chitinase Activities in Wheat and Its Relative Species

Abstract

Defense components such as chitinases (EC 3.2.1.14) are crucial for plants to cope diseases. Despite of that the pattern and activities of these enzymes in agronomically important Triticale is unexplored. This work is aimed to study chitinase activities in the leaves of plants of early developmental stages in two diploids (Aegilops tauschii Coss., Triticum monococcum L.), four tetraploids (Ae. cylindrical Host, Ae. triuncialis L., T. araraticum Jakubyz, T. dicoccum Schrank) and two hexaploids (T. aestivum L., T. spelta L.). The leaves were subjected to quantitative and qualitative activity assays using synthetic 4-methylumbelliferyl-β-D-N,N´,N´´-triacetylchitotrioside and glycolchitin as substrates, respectively. Our results showed that the activities of chitinases with specificity towards short oligomers were variable and genotype dependent. The enzyme activities in the tetra- and hexaploid genotypes were significantly higher than in diplod counterparts. In the gel detection assays were revealed up to four fractions (~20, 30, 42 and 95 kDa) of proteins with the chitinase activity towards long chain polymers. The isoform of ~30 kDa was identified in all analyzed genotypes. Among the seven acidic and three basic chitinase fractions identified, three acidic (ChiA, ChiB, ChiC) and two (ChiH, ChiI) fractions were present in all genotypes. None of the isoforms can be assigned as specific with respect to ploidy.

Open access