Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Ian Plewis x
Clear All Modify Search
Open access

Ian Plewis and Natalie Shlomo

Abstract

We review two approaches for improving the response in longitudinal (birth cohort) studies based on response propensity models: strategies for sample maintenance in longitudinal studies and improving the representativeness of the respondents over time through interventions. Based on estimated response propensities, we examine the effectiveness of different re-issuing strategies using Representativity Indicators (R-indicators). We also combine information from the Receiver Operating Characteristic (ROC) curve with a cost function to determine an optimal cut point for the propensity not to respond in order to target interventions efficiently at cases least likely to respond. We use the first four waves of the UK Millennium Cohort Study to illustrate these methods. Our results suggest that it is worth re-issuing to the field nonresponding cases from previous waves although re-issuing refusals might not be the best use of resources. Adapting the sample to target subgroups for re-issuing from wave to wave will improve the representativeness of response. However, in situations where discrimination between respondents and nonrespondents is not strong, it is doubtful whether specific interventions to reduce nonresponse will be cost effective.

Open access

Jose Pina-Sánchez, Johan Koskinen and Ian Plewis

Abstract

We use work histories retrospectively reported and matched to register data from the Swedish unemployment office to assess: 1) the prevalence of measurement error in reported spells of unemployment; 2) the impact of using such spells as the response variable of an exponential model; and 3) strategies for the adjustment of the measurement error. Due to the omission or misclassification of spells in work histories we cannot carry out typical adjustments for memory failures based on multiplicative models. Instead we suggest an adjustment method based on a mixture Bayesian model capable of differentiating between misdated spells and those for which the observed and true durations are unrelated. This adjustment is applied in two manners, one assuming access to a validation subsample and another relying on a strong prior for the mixture mechanism. Both solutions demonstrate a substantial reduction in the vast biases observed in the regression coefficients of the exponential model when survey data is used.