Search Results

You are looking at 1 - 2 of 2 items for

  • Author: I. Idris x
Clear All Modify Search
Open access

A. Adam, M.I.E. Arabi, I. Idris and E. Al-Shehadah


The effect of Pseudomonas putida BTP1, Bacillus subtilis Bs2500, Bs2504, and Bs2508 strains on the incidence (I) and severity (S) of barley leaf stripe disease caused by Pyrenophora graminea was evaluated under field conditions. Three barley cultivars varying in resistance level were used. The resistance achieved in our study was long-lasting. P. putida BTP1 and Bs2508 were in general the most effective strains in reducing significantly both I and S of barley leaf stripe disease vis-a-vis three cultivars in two growing seasons 2013/2014. The disease was reduced up to 66% in Arabi Abiad treated with P. putida BTP1. The susceptible landrace cultivar Arabi Abiad exhibited a significant induction of resistance by Bs2508 and BTP1. However, the resistant cultivar Banteng did not exhibit significant further increase in resistance by these bacterial strains. The grain yield of bacterized plants artificially inoculated with P. graminea was not affected, except that of the cultivar Arabi Abiad treated with Bs2508 and Bs2504. Triggering of resistance by treating seeds with the bacterial strains would be of great value in agriculture, especially in case of barley infection by P. graminea at an early stage of plant development.

Open access

A.L. Ahmad, I. Idris, C.Y. Chan and S. Ismail


This research emphasizes eloquently on membrane technology for treatment of palm oil mill effluent (POME) as it is the Malaysia’s largest and most important agro based industry. Findings established significant quality improvement with an efficient recovery of water from palm oil mill via innovative membrane application. Conventional bio-methods, whilst adhering to the Department of Environment’s (DOE) discharge regulations, produces brownish liquid which pales in comparison to the crystal clear water obtained through membrane treatment. The pre-treatment process consists of coagulation-flocculation using green environmental coagulant bases such as Moringa oleifera (MO) seeds. The ultrafiltration polyvinylidene difluoride (PVDF) and thin film composite (TFC) reverse osmosis were vital for the membrane processes. The system gave 99% suspended solids reduction in suspended solid and 78% of water present was successfully recovered. This technology guarantees water recovery with drinking water quality; meeting the US Environmental Protection Agency (USEPA) standard or could be recycled into the plant with sludge utilization for palm oil estates, thus enabling the concept of zero discharge to be executed in the industries. In addition, green and healthy antioxidants such as oil and beta-carotene can be recovered from POME further demonstrate. Silica gel showed better performance in separation of carotenes from oil at temperature 40°C using adsorption chromatography with 1154.55 ppm. The attractiveness of this technology, enabling the utilization of reuse of agricultural waste into potentially value added products.