Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Hyun Seon Hong x
Clear All Modify Search
Open access

Hyun Seon Hong, Dae Weon Kim, Hee Lack Choi and Sung-Soo Ryu

Abstract

As a part of the study on recycling Li(NCM)O2 lithium-ion battery scraps, solvent extraction experiments were performed using different extraction agents such as PC88A, Cyanex272 and D2EHPA to separate Co, Ni and Mn from the leaching solution. When the ratio of Mn to Ni was about 0.4 in the leaching solution, the separation factor for Co and Mn was found to be less than 10 so that the separation of Co and Ni was insufficient. When solvent extraction was done using the solution with the lower Mn/Ni ratio of 0.05 where Mn was removed by potassium permanganate and chlorine dioxide, more than 99% of Mn could be extracted through five courses of extraction using 30vol% D2EHPA while the extraction rates of Co and Ni were around 17% and 11%, respectively. In the case that Mn was removed from the solution, the extraction rate of Co was higher than 99% whereas less than 7% Ni was extracted using Cyanex272 suggesting that Co and Ni elements were effectively separated.

Open access

Chan-Mi Kim, Peyala Dharmaiah, Hyo-Seob Kim, Jar-Myung Koo, Jae-Sik Yoon, Hyun-Seon Hong and Soon-Jik Hong

Abstract

The objective of this particular study was to recover valuable metals from waste plasma display panels using high energy ball milling with subsequent acid dissolution. Dissolution of milled (PDP) powder was studied in HCl, HNO3, and H2SO4 acidic solutions. The effects of dissolution acid, temperature, time, and PDP scrap powder to acid ratio on the leaching process were investigated and the most favorable conditions were found: (1) valuable metals (In, Ag, Mg) were recovered from PDP powder in a mixture of concentrated hydrochloric acid (HCl:H2O = 50:50); (2) the optimal dissolution temperature and time for the valuable metals were found to be 60°C and 30 min, respectively; (3) the ideal PDP scrap powder to acid solution ratio was found to be 1:10. The proposed method was applied to the recovery of magnesium, silver, and indium with satisfactory results.