Search Results

1 - 5 of 5 items

  • Author: Hermann Ney x
Clear All Modify Search
Hierarchical Phrase-Based Translation with Jane 2

Hierarchical Phrase-Based Translation with Jane 2

In this paper, we give a survey of several recent extensions to hierarchical phrase-based machine translation that have been implemented in version 2 of Jane, RWTH's open source statistical machine translation toolkit. We focus on the following techniques: Insertion and deletion models, lexical scoring variants, reordering extensions with non-lexicalized reordering rules and with a discriminative lexicalized reordering model, and soft string-to-dependency hierarchical machine translation. We describe the fundamentals of each of these techniques and present experimental results obtained with Jane 2 to confirm their usefulness in state-of-the-art hierarchical phrase-based translation (HPBT).

Open access
Generating Alignments Using Target Foresight in Attention-Based Neural Machine Translation

Abstract

Neural machine translation (NMT) has shown large improvements in recent years. The currently most successful approach in this area relies on the attention mechanism, which is often interpreted as an alignment, even though it is computed without explicit knowledge of the target word. This limitation is the most likely reason that the quality of attention-based alignments is inferior to the quality of traditional alignment methods. Guided alignment training has shown that alignments are still capable of improving translation quality. In this work, we propose an extension of the attention-based NMT model that introduces target information into the attention mechanism to produce high-quality alignments. In comparison to the conventional attention-based alignments, our model halves the Aer with an absolute improvement of 19.1% Aer. Compared to GIZA++ it shows an absolute improvement of 2.0% Aer.

Open access
Source-Side Discontinuous Phrases for Machine Translation: A Comparative Study on Phrase Extraction and Search

Abstract

Standard phrase-based statistical machine translation systems generate translations based on an inventory of continuous bilingual phrases. In this work, we extend a phrase-based decoder with the ability to make use of phrases that are discontinuous in the source part. Our dynamic programming beam search algorithm supports separate pruning of coverage hypotheses per cardinality and of lexical hypotheses per coverage, as well as coverage constraints that impose restrictions on the possible reorderings. In addition to investigating these aspects, which are related to the decoding procedure, we also concentrate our attention on the question of how to obtain source-side discontinuous phrases from parallel training data. Two approaches (hierarchical and discontinuous extraction) are presented and compared. On a large-scale Chinese!English translation task, we conduct a thorough empirical evaluation in order to study a number of system configurations with source-side discontinuous phrases, and to compare them to setups which employ continuous phrases only.

Open access
A Guide to Jane, an Open Source Hierarchical Translation Toolkit

A Guide to Jane, an Open Source Hierarchical Translation Toolkit

Jane is RWTH's hierarchical phrase-based translation toolkit. It includes tools for phrase extraction, translation and scaling factor optimization, with efficient and documented programs of which large parts can be parallelized. The decoder features syntactic enhancements, reorderings, triplet models, discriminative word lexica, and support for a variety of language model formats. In this article, we will review the main features of Jane and explain the overall architecture. We will also indicate where and how new models can be included.

Open access
Empirical Investigation of Optimization Algorithms in Neural Machine Translation

Abstract

Training neural networks is a non-convex and a high-dimensional optimization problem. In this paper, we provide a comparative study of the most popular stochastic optimization techniques used to train neural networks. We evaluate the methods in terms of convergence speed, translation quality, and training stability. In addition, we investigate combinations that seek to improve optimization in terms of these aspects. We train state-of-the-art attention-based models and apply them to perform neural machine translation. We demonstrate our results on two tasks: WMT 2016 En→Ro and WMT 2015 De→En.

Open access