Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Hani Hagras x
Clear All Modify Search
Open access

Syibrah Naim and Hani Hagras

Abstract

Multi-Criteria Group Decision Making (MCGDM) aims to find a unique agreement from a number of decision makers/users by evaluating the uncertainty in judgments. In this paper, we present a General Type-2 Fuzzy Logic based approach for MCGDM (GFLMCGDM). The proposed system aims to handle the high levels of uncertainties which exist due to the varying Decision Makers’ (DMs) judgments and the vagueness of the appraisal. In order to find the optimal parameters of the general type-2 fuzzy sets, we employed the Big Bang-Big Crunch (BB-BC) optimization. The aggregation operation in the proposed method aggregates the various DMs opinions which allow handling the disagreements of DMs’ opinions into a unique approval. We present results from an application for the selection of reading lighting level in an intelligent environment. We carried out various experiments in the intelligent apartment (iSpace) located at the University of Essex. We found that the proposed GFL-MCGDM effectively handle the uncertainties between the various decision makers which resulted in producing outputs which better agreed with the users’ decision compared to type 1 and interval type 2 fuzzy based systems.

Open access

Khalid Almohammadi, Hani Hagras, Daniyal Alghazzawi and Ghadah Aldabbagh

Abstract

Technological advancements within the educational sector and online learning promoted portable data-based adaptive techniques to influence the developments within transformative learning and enhancing the learning experience. However, many common adaptive educational systems tend to focus on adopting learning content that revolves around pre-black box learner modelling and teaching models that depend on the ideas of a few experts. Such views might be characterized by various sources of uncertainty about the learner response evaluation with adaptive educational system, linked to learner reception of instruction. High linguistic uncertainty levels in e-learning settings result in different user interpretations and responses to the same techniques, words, or terms according to their plans, cognition, pre-knowledge, and motivation levels. Hence, adaptive teaching models must be targeted to individual learners’ needs. Thus, developing a teaching model based on the knowledge of how learners interact with the learning environment in readable and interpretable white box models is critical in the guidance of the adaptation approach for learners’ needs as well as understanding the way learning is achieved.

This paper presents a novel interval type-2 fuzzy logic-based system which is capable of identifying learners’ preferred learning strategies and knowledge delivery needs that revolves around characteristics of learners and the existing knowledge level in generating an adaptive learning environment. We have conducted a large scale evaluation of the proposed system via real-word experiments on 1458 students within a massively crowded e-learning platform. Such evaluations have shown the proposed interval type-2 fuzzy logic system’s capability of handling the encountered uncertainties which enabled to achieve superior performance with regard to better completion and success rates as well as enhanced learning compared to the non-adaptive systems, adaptive system versions led by the teacher, and type-1-based fuzzy based counterparts.

Open access

Khalid Colchester, Hani Hagras, Daniyal Alghazzawi and Ghadah Aldabbagh

Abstract

The adaptive educational systems within e-learning platforms are built in response to the fact that the learning process is different for each and every learner. In order to provide adaptive e-learning services and study materials that are tailor-made for adaptive learning, this type of educational approach seeks to combine the ability to comprehend and detect a person’s specific needs in the context of learning with the expertise required to use appropriate learning pedagogy and enhance the learning process. Thus, it is critical to create accurate student profiles and models based upon analysis of their affective states, knowledge level, and their individual personality traits and skills. The acquired data can then be efficiently used and exploited to develop an adaptive learning environment. Once acquired, these learner models can be used in two ways. The first is to inform the pedagogy proposed by the experts and designers of the adaptive educational system. The second is to give the system dynamic self-learning capabilities from the behaviors exhibited by the teachers and students to create the appropriate pedagogy and automatically adjust the e-learning environments to suit the pedagogies. In this respect, artificial intelligence techniques may be useful for several reasons, including their ability to develop and imitate human reasoning and decision-making processes (learning-teaching model) and minimize the sources of uncertainty to achieve an effective learning-teaching context. These learning capabilities ensure both learner and system improvement over the lifelong learning mechanism. In this paper, we present a survey of raised and related topics to the field of artificial intelligence techniques employed for adaptive educational systems within e-learning, their advantages and disadvantages, and a discussion of the importance of using those techniques to achieve more intelligent and adaptive e-learning environments.