Search Results

You are looking at 1 - 10 of 46 items for

  • Author: H.S. Kim x
Clear All Modify Search
Open access

S. Kim and H. Lee

Boundary element modelling of wave diffraction by interaction with wave-offshore structure and dredged region

The purpose of this study is to estimate the wave height at the front face of breakwater (Refracted breakwater and Straight breakwater), when dredging like the submarine pit is performed in the distant offshore from outer breakwater. The wave field of the problem is considered to be two dimensional planes and the configuration of the pit region is designated by a single horizontal long-rectangular system. The numerical approach uses the Green function based on the boundary integral approach. The results of the present numerical works are illustrated by applying the normal and inclined incidence. It is shown that in the case of normal incidence, the ratio of wave height reduction at the front face of both types of breakwaters is approximately more than 20% due to the effect of the submarine pit on the sea bed. Furthermore, regardless of the type of breakwater and the difference in incident wave angles, the ratio of wave height was shown to be reduced.

Open access

H.-S. Cho and S.-S. Kim

Abstract

This work investigates the effect of a frequency selective surface (FSS) composed of a regular array of square loop elements on the absorption properties of grounded ferrite composites. Polymer matrix composites of CoZnW hexaferrite powders having small magnetic loss were used as the substrate material. Computational tools were used to model the interaction between electromagnetic waves and materials and determine the reflection coefficient. Reflection loss and bandwidth were greatly improved by attaching an FSS with controlled electrical resistance (R) onto the grounded ferrite composites. For the FSS with R = 800 Ω, the minimum reflection loss decreased to −25 dB at 10 GHz and the bandwidth was broadened to 7.5-12.5 GHz with respect to −10 dB reflection loss.

Open access

H. Asgharzadeh and H.S. Kim

Abstract

Al-3 vol% CNT nanocomposites were processed by high-pressure torsion (HPT) at room temperature under the pressure in the range of 2.5-10 GPa for up to 10 turns. Optical microscopy, scanning electron microscopy, and transmission electron microscopy (TEM) were used to investigate the microstructural evolutions upon HPT. Mechanical properties of the HPT-processed disks were studied using tensile tests and microhardness measurements. The results show gradual evolutions in the density, microstructure, and hardness with increasing the number of turns and applied presure. Nanostructured and elongated Al grains with an average grain thickness of ~40 nm perpendicular to the compression axis of HPT and an aspect ratio of ~3 are formed after 10 turns under 6 GPa. Evaluating the mechanical properties of the 10-turn processed Al/CNT nanocomposites indicates a tensile strength of 321 MPa and a hardness of 122 Hv. The tensile fracture surface of the Al/CNT nanocomposite mostly demonstrates a smooth fracture manner with fine dimples resulting in a low tensile ductility of ~1.5%.

Open access

D.H. Shim, S.S. Jung, H.S. Kim, H. Cho, J.K. Kim, T.G. Kim and S.J. Yoon

Abstract

Zirconia matrix ZrO2/CNT composite materials reinforced with multiwall carbon nanotubes were fabricated using a spark plasma sintering technique. The effects of the amount of CNTs addition, sintering temperature and sintering pressure on the properties of the resulting ZrO2/CNT composites were examined. 0 to 9 vol. % CNTs were dispersed in zirconia powder, and the resulting mixture was sintered. The electrical conductivity, hardness, flexural strength, and density were measured to characterize the composites. The friction and wear properties of the composites were also tested. The flexural strength and friction coefficient of the composites were improved with up to 6 vol.% of CNT addition and the flexural strength showed a close relationship with the relative density of the composite. The electrical conductivity increased with increasing proportion of the CNTs, but the efficiency was reduced at more than 6 vol.% CNTs.

Open access

S.-Y. Kim, M.-H. Lee, T.-S. Kim and B.-S. Kim

Abstract

Porous metallic materials have been widely used in many fields including aerospace, atomic energy, electro chemistry and environmental protection. Their unique structures make them very useful as lightweight structural materials, fluid filters, porous electrodes and catalyst supports. In this study, we fabricated Ni-based porous metallic glasses having uniformly dispersed micro meter pores by the sequential processes of ball-milling and chemical dissolution method. We investigated the application of our porous metal supported for Pt catalyst. The oxidation test was performed in an atmosphere of 1% CO and 3% O2. Microstructure observation was performed by using a scanning electron microscope. Oxidation properties and BET (Brunauer, Emmett, and Teller) were analyzed to understand porous structure developments. The results indicated that CO Oxidation reaction was dependent on the specific surface area.

Open access

D. H. Kim, A. Kinmond, S. Gilani, S. Giridharan and A. Jegannathen

Abstract

INTRODUCTION: The aim of this study is to assess the efficacy and toxicity of maintenance pemetrexed following induction treatment with cisplatin and pemetrexed for patients with advanced non-small cell lung cancer.

PATIENTS AND METHODS: Eligible patients following four cycles of intravenous pemetrexed (Alimpta©; 500 mg/m2) and intravenous cisplatin (75 mg/m2) were given 21-day cycles of maintenance pemetrexed (500 mg/m2) until disease progression, unacceptable adverse event or death. From a total 80 patients receiving palliative induction chemotherapy, 17 subsequently received maintenance pemetrexed.

RESULTS: The mean number of maintenance cycles completed was 5.9 (range 1-20; median 3.0). The mean progression-free survival (PFS) was 5.2 months (range: 2-15; median: 2.0) and the 1-year PFS was 17%. Treatment was discontinued due to disease progression (71%), adverse event (21%) and death from study disease (7%). Grade 3-4 laboratory and non-laboratory adverse events were seen in 11.8 and 17.6% of patients, respectively. Anaemia was the most common adverse event (71% of all patients; 65% grade 1-2; 5.9% grade 3-4). The most common reason for withdrawal due to adverse event was declining renal function. There was a statistically significant correlation between worsening performance status and reducing number of maintenance cycles completed (Spearman’s rank; R = −0.511, p = 0.036).

DISCUSSION: The median PFS was lower than in previous studies with a higher than previously reported frequency of adverse events. Clinicians must monitor renal function and full blood counts vigilantly, especially in patients with performance status greater than 0.

Open access

W.J. Kim, H.-H. Nguyen, H.Y. Kim, M.-T. Nguyen, H.S. Park and J.-C. Kim

Abstract

Selective laser sintering (SLS) is a type of laminating sintering technique, using CO2 laser with (metal, polymer, and ceramic) powders. In this result, the flake SUS 316L was used to achieve a high porous product, and compare to spherical type. After SLS, the porosity of flake-type sample with 34% was quite higher than that of the spherical-type one that had only 11%. The surface roughness of the flake SLS sample were also investigated in both inner and surface parts. The results show that the deviation of the roughness of the surface part is about 64.40μm, while that of the internal one was about 117.65μm, which presents the containing of high porosity in the uneven surfaces. With the process using spherical powder, the sample was quite dense, however, some initial particles still remained as a result of less energy received at the beneath of the processing layer.

Open access

P. Dharmaiah, H.-S. Kim, K.-H. Lee and S.-J. Hong

Abstract

In this study, single phase polycrystalline Zn4Sb3 as well as 11 at.% Zn-rich Zn4Sb3 alloy having ε-Zn4Sb3 (majority phase) and Zn (minority phase) phases bulk samples produced by gas-atomization and subsequently consolidated by spark plasma sintering (SPS) process. The crystal structures were analyzed by X-ray diffraction (XRD) and cross-sectional microstructure were observed by the scanning electron microscopy (SEM). The internal grain microstructure of 11at.% Zn-rich Zn4Sb3 powders shows lamellar structure. Relative density, Vickers hardness and crack lengths were measured to investigate the effect of sintering temperature of Zn4Sb3 samples which are sintered at 653, 673 and 693 K. Relative density of the single phase bulk Zn4Sb3 sample reached to 99.2% of its theoretical density. The micro Vickers hardness of three different sintering temperatures were found around 2.17 – 2.236 GPa.

Open access

D.-J. Kim, K.M. Kim, J.H. Shin, Y.M. Cheong, E.H. Lee, G.G. Lee, S.W. Kim, H.P. Kim, M.J. Choi, Y.S. Lim and S.S. Hwang

Abstract

Fast water flow facilitates ferrous ion transport leading to flow accelerated corrosion (FAC) of carbon steel and the possibility of a large accident through a failure of a secondary pipe in a nuclear power plant. Ion transport is directly linked to oxide properties such as the thickness, chemical composition and porosity. This work deals with a precise observation of the cross section of the corroded specimen focusing on an oxide passivity and its thickness using SEM (scanning electron microscope) and TEM (transmission electron microscope) as well as an apparent weight loss and a surface observation for the specimens corroded using a rotating cylindrical electrode autoclave system in pure water of pH 7 at 150°C having dissolved oxygen below 1 ppb within a flow rate range of 0 to 10 m/s. The Cr content in steel was changed from 0.02 to 2.4 wt%. Increasing the Cr content in the alloy, the FAC rate and oxide thickness decreased. The oxide porosity tends to decrease with the Cr content and immersion time owing to the development of Cr containing oxide. The oxidation behavior is not changed with the immersion time.

Open access

D.-H. Kim, T.-J. Kim and S.-G. Lim

Abstract

In this study, mechanical properties and microstructures of extruded aluminum matrix composites were investigated. The composite materials were manufactured by two step methods: powder metallurgy (mixture of aluminum powder and carbon fiber using a turbular mixer, pressing of mixed aluminum powder and carbon fiber using a cold isostatic pressing) and hot extrusion of pressed aluminum powder and carbon fiber. For the mixing of Al powder and carbon fibers, aluminum powder was used as a powder with an average particle size of 30 micrometer and the addition of the carbon fibers was 50% of volume. In order to make mixing easier, it was mixed under an optimal condition of turbular mixer with a rotational speed of 60 rpm and time of 1800s. The process of the hot-extrusion was heated at 450°C for 1 hour. Then, it was hot-extruded with a condition of extrusion ratio of 19 and ram speed of 2 mm/s. The microstructural analysis of extruded aluminum matrix composites bars and semi-solid casted alloys were carried out with the optical microscope, scanning electron microscope and X-ray diffraction. Its mechanical properties were evaluated by Vickers hardness and tensile test.