Search Results

You are looking at 1 - 3 of 3 items for

  • Author: H. Teng x
Clear All Modify Search
Open access

L. Teng, S. Seetharaman, M. Nzotta, P. Dong, H. Ge, L. Wang, H. Wang and A. Chychko

Retention, Recovery and Recycling of Metal Values from High Alloyed Steel Slags

The work was carried out in four parallel directions. The thermodynamic activities of oxides of Cr in steel slags were determined by slag-gas equilibration technique. The ratio of Cr2+/Cr3+ in CaO-MgO(-FeO)-AlO3-SiO2-CrO× system slags was measured by X-ray absorption near edge spectra (XANES). High-temperature mass spectrometry method was also used to obtain the distribution of chromium oxides. A mathematical correlation was established for estimating the ratio of Cr2+/Cr3+ as a function of temperature, partial pressure of oxygen and slag basicity. Laboratory investigations of the decarburization of high alloy steels under controlled oxygen potentials have been carried out to retain Cr in the steel phase. A mathematical model has been developed for the decarburization process with controlled oxygen partial pressure. Experimental and theoretical investigations have been carried out in optimizing the Mo-additions to steel in the EAF practice in Uddeholm Tooling AB. Substantial saving of Mo as well as less emissions of Mo-bearing dust are indicated in the study. A salt extraction process was developed to extract the metal values from steel slags. Successful extractions, followed by electrolysis indicate that this could be a viable route towards recovery of metals from metallurgical slags.

Open access

M. Zheng, H. Gao, H. Teng, J. Hu, Z. Tian and Y. Zhao

Abstract

In this article, it aims to propose effective approaches for hydro-forming process of bi-metallic composite pipe by assuming plane strain and elastic-perfectly plastic material model. It derives expressions for predicting hydro-forming pressure and residual stress of the forming process of bi-metallic composite pipe. Test data from available experiments is employed to check the model and formulas. It shows the reliability of the proposed model and formulas impersonally.

Open access

Ding Y, Xia B-H, Teng Y-S, Zhuo G-C and Leng J-H

Abstract

Variations in mitochondrial genome have been found to be associated with hearing loss. Of these, the mitochondrial 12S rRNA and tRNASer(UCN) are the hot-spots for pathogenic variants associated with deafness. To understand the putative role of mitochondrial DNA (mtDNA) variants in hearing loss, we recently screened the variants in mitochondrial genomes in patients with deafness from the Hangzhou area of Zhejiang Province, People’s Republic of China (PRC). In this study, we describe a maternally-inherited Han Chinese family with high penetrance of hearing loss, notably, the penetrance of hearing loss in this family were 80.0 and 40.0%, when the aminoglycoside was included or excluded. Three matrilineal relatives in this pedigree exhibited different levels of hearing loss with different age at onset. In addition, sequence analysis of the complete mitochondrial genome showed the presence of the well-known C1494T pathogenic variant in the 12S rRNA gene and the G7444A pathogenic variant in the COI/ tRNASer(UCN). The C1494T anomaly had been reported to be a pathogenic mutation associated with aminoglycoside-induced and nonsyndromic hearing loss (AINHL), while the G7444A was considered as a secondary mutation associated with deafness. However, the lack of functional variants in GJB2 and TRMU genes suggested that nuclear modified genes may not play important roles in deafness expression. Thus, the combination of G7444A and C1494T pathogenic variants in the mitochondrial genome may account for the high penetrance of hearing loss in this Chinese family.