Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Grzegorz Tomczyk x
Clear All Modify Search
Open access

Olimpia Kursa, Grzegorz Tomczyk and Anna Sawicka


Introduction: Mycoplasma synoviae (MS) is a chicken pathogen of major economic importance.

Material and Methods: Between 2010 and 2016, 906 commercial layer chicken flocks in Poland were examined for MS, and the phylogenetic relationship among the strains was established. Regionally dispersed samples were collected and tested with the use of real-time PCR to detect the 16S–23S intergenic spacer region. Positive samples were also tested with LAMP and conventional PCR to detect the vlhA gene.

Results: MS genetic material was detected in 265 (29%) of the tested flocks by real-time PCR, in 227 by the LAMP method and in 202 (22%) by conventional PCR. The by-year percentage of positive samples began at 34% in 2010, rose to 44% in 2012, and declined to 29% in 2016. A phylogenetic analysis of Polish M. synoviae strains using a partial sequence of the vlhA gene showed nine genotypes (A–I), the most frequently occurring being F and C. Pathogenic Polish MS field isolates (n = 27) collected from chickens with clinical signs of infection were grouped for their characteristic symptoms: respiratory for genotypes C, E, F, and I (n = 13), EAA and a drop in laying for genotypes F, E, and C (n = 12), and synovitis for genotype A (n = 2).

Conclusion: These data showed the country’s isolate diversity. The high prevalence suggests the need to introduce appropriate control programmes. This is the first report of molecular epidemiological data on M. synoviae infection in layer chickens in Poland.

Open access

Anna Gajda, Andrzej Posyniak and Grzegorz Tomczyk


For the purpose of quantitative determination of doxycycline (DC) residues in tissues, a sensitive liquid chromatography - tandem mass spectrometry (LC-MS/MS) method was developed. The method was used to determine DC residues in chicken tissues (breast and thigh muscle, liver and kidney) after oral administration with drinking water to five-weak-old broiler chickens. The DC was administered for five consecutive days at a therapeutic dose of 10 mg/kg b.w. once a day. The tissues were collected after 6 h, 24 h, 7 d, and 8 d. The method was validated and the decision limit was established for muscle - 109.2 μg/kg, for liver - 326.1 μg/kg, and for kidney - 634.0 μg/kg. The detection limit was 2 μg/kg and the limit of quantification was 5 μg/kg. In a short period after ceasing the treatment, the detected concentrations of DC were much higher than the established maximum residue limit values. The highest residue concentrations of DC were observed in the kidney, followed by the liver and muscle. The lowest concentration of DC was determined in tight muscle.

Open access

Małgorzata Gbylik-Sikorska, Andrzej Posyniak, Tomasz Śniegocki, Bartosz Sell, Anna Gajda, Grzegorz Tomczyk and Jan Żmudzki


Introduction: The main problem in poultry farming is the difficulty in producing food of animal origin without using antibacterial agents. Because most antibacterial compounds are dispensed in water, some water supply systems can be contaminated by antibiotics which are then administered to the animals unintentionally. This can lead to unexpected increases in antibiotic residues in food of animal origin. The aim of the present study was to determine whether the constant exposure of chicken broilers to enrofloxacin affects the withdrawal time of a therapeutic doxycycline that is intentionally administered to the chickens.

Material and Methods: The concentrations of doxycycline, enrofloxacin, and ciprofloxacin were determined by LC-MS/MS in muscles and liver of the chickens.

Results: Doxycycline residue concentrations in the chicken tissues from the group that received trace amounts of enrofloxacin were nearly 50% greater than those of the group that received only doxycycline.

Conclusion: These results indicated that constant exposure to enrofloxacin in trace amounts significantly influences the residual doxycycline concentration in chicken tissues.