Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Grazyna Piotrowska x
Clear All Modify Search
Open access

Grazyna Piotrowska and Boguslaw Pierozynski

Abstract

This work reports on the process of phenol electrooxidation, which is carried-out through continuous electrolysis of synthetic, sodium sulphate-based wastewater. Phenol electrodegradation is examined by means of a laboratory size (ca. 700 cm3 of working volume), poly (methyl methacrylate)-made electrolyser unit for various, carbon fibre and graphite-based anode configurations, and stainless steel cathodes, two different current-densities and concentrations of phenol in synthetically prepared wastewater solution. Proper monitoring of phenol degradation (including quantitative identification of reaction products and calculation of specific energy consumption) in wastewater is performed by means of instrumental, combined HPLC and MS technique in function of electrolysis time.

Open access

Bogusław Pierożyński, Grażyna Piotrowska and Tomasz Mikołajczyk

Abstract

This work reports on kinetics of phenol electrooxidation reaction (PhER), examined at polycrystalline Pt electrode in 0.5 M H2SO4 and 0.1 M NaOH supporting solutions. Important aspects of PhER kinetics were analysed based on potential-dependent, a.c. impedance-derived values of charge-transfer resistance and capacitance parameters. Special attention was also given to the influence of supporting electrolyte ions on the process of phenol oxidation (pH dependence of the PhER), in relation to an important role of anion adsorption on the Pt catalyst surface.

Open access

Anna Markowicz, Grażyna Płaza and Zofia Piotrowska-Seget

Abstract

The impacts of long-term polycyclic aromatic hydrocarbons (PAHs) and heavy metal pollution on soil microbial communities functioning were studied in soils taken from an old coke plant. The concentrations of PAHs in the tested soils ranged from 171 to 2137 mg kg-1. From the group of tested heavy metals, concentrations of lead were found to be the highest, ranging from 57 to 3478 mg kg-1, while zinc concentrations varied from 247 to 704 mg kg-1 and nickel from 10 to 666 mg kg-1. High dehydrogenase, acid and alkaline phosphatase activities were observed in the most contaminated soil. This may indicate bacterial adaptation to long-term heavy metal and hydrocarbon contamination. However, the Community Level Physiological Profiles (CLPPs) analysis showed that the microbial functional diversity was reduced and influenced to a higher extent by some metals (Pb, Ni), moisture and conductivity than by PAHs.

Open access

Monika Asztemborska, Małgorzata Jakubiak, Małgorzata Książyk, Romuald Stęborowski, Halina Polkowska-Motrenko and Grażyna Bystrzejewska-Piotrowska

Abstract

Water environments are noted as being some of the most exposed to the influence of toxic nanoparticles (NPs). Therefore, there is a growing need for the investigation of the accumulation and toxicity of NPs to aquatic organisms. In our studies neutron activation followed by gamma spectrometry and liquid scintillation counting were used for studying the accumulation of silver nanoparticles (AgNPs) by freshwater larvae of Chironomus and fish Danio rerio. The influence of exposition time, concentration and the source of nanoparticles on the efficiency of AgNP accumulation were studied. It was found that AgNPs are efficiently accumulated by Chironomid larvae for the first 30 hours of exposition; then, the amount of silver nanoparticles decreases. The silver content in larvae increases together with the NP concentration in water. Larvae which have accumulated AgNPs can be a source of nanoparticles for fish and certainly higher levels of Ag in the trophic chain. In comparison with water contamination, silver nanoparticles are more efficiently accumulated if fish are fed with AgNP-contaminated food. Finally, it was concluded that the applied study strategy, including neutron activation of nanoparticles, is very useful technique for tracing the uptake and accumulation of NPs in organisms