Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Gerhard Burckhardt x
Clear All Modify Search
Open access

Hrvoje Brzica, Davorka Breljak, Birgitta C Burckhardt, Gerhard Burckhardt and Ivan Sabolić

Abstract

Oxalate urolithiasis (nephrolithiasis) is the most frequent type of kidney stone disease. Epidemiological research has shown that urolithiasis is approximately twice as common in men as in women, but the underlying mechanism of this sex-related prevalence is unclear. Oxalate in the organism partially originate from food (exogenous oxalate) and largely as a metabolic end-product from numerous precursors generated mainly in the liver (endogenous oxalate). Oxalate concentrations in plasma and urine can be modified by various foodstuffs, which can interact in positively or negatively by affecting oxalate absorption, excretion, and/or its metabolic pathways. Oxalate is mostly removed from blood by kidneys and partially via bile and intestinal excretion. In the kidneys, after reaching certain conditions, such as high tubular concentration and damaged integrity of the tubule epithelium, oxalate can precipitate and initiate the formation of stones. Recent studies have indicated the importance of the SoLute Carrier 26 (SLC26) family of membrane transporters for handling oxalate. Two members of this family [Sulfate Anion Transporter 1 (SAT-1; SLC26A1) and Chloride/Formate EXchanger (CFEX; SLC26A6)] may contribute to oxalate transport in the intestine, liver, and kidneys. Malfunction or absence of SAT-1 or CFEX has been associated with hyperoxaluria and urolithiasis. However, numerous questions regarding their roles in oxalate transport in the respective organs and male-prevalent urolithiasis, as well as the role of sex hormones in the expression of these transporters at the level of mRNA and protein, still remain to be answered.

Open access

Dean Karaica, Davorka Breljak, Jovica Lončar, Mila Lovrić, Vedran Micek, Ivana Vrhovac Madunić, Hrvoje Brzica, Carol M. Herak-Kramberger, Jana Ivković Dupor, Marija Ljubojević, Tvrtko Smital, Željka Vogrinc, Gerhard Burckhardt, Birgitta C. Burckhardt and Ivan Sabolić

Abstract

Chloride/formate exchanger (CFEX; SLC26A6) mediates oxalate transport in various mammalian organs. Studies in Cfex knockout mice indicated its possible role in development of male-dominant hyperoxaluria and oxalate urolithiasis. Rats provide an important model for studying this pathophysiological condition, but data on Cfex (rCfex) localisation and regulation in their organs are limited. Here we applied the RT-PCR and immunochemical methods to investigate rCfex mRNA and protein expression and regulation by sex hormones in the pancreas, small intestine, liver, and kidneys from intact prepubertal and adult as well as gonadectomised adult rats treated with sex hormones. rCfex cDNA-transfected HEK293 cells were used to confirm the specificity of the commercial anti-CFEX antibody. Various biochemical parameters were measured in 24-h urine collected in metabolic cages. rCfex mRNA and related protein expression varied in all tested organs. Sex-independent expression of the rCfex protein was detected in pancreatic intercalated ducts (apical domain), small intestinal enterocytes (brush-border membrane; duodenum > jejunum > ileum), and hepatocytes (canalicular membrane). In kidneys, the rCfex protein was immunolocalised to the proximal tubule brush-border with segment-specific pattern (S1=S2<S3), and both rCfex mRNA and protein expression exhibited male-dominant sex differences driven by stimulatory effects of androgens after puberty. However, urinary oxalate excretion was unrelated to renal rCfex protein expression. While the effect of male-dominant expression of rCfex in renal proximal tubules on urine oxalate excretion remains unknown, its expression in the hepatocyte canalicular membrane may be a pathway of oxalate elimination via bile.