Search Results

1 - 2 of 2 items

  • Author: Garik Tepanosyan x
Clear All Modify Search
Studying the Dynamics of Lake Sevan Water Surface Temperature Using Landsat8 Sateliite Imagery

Abstract

Lake Sevan being Armenia’s largest freshwater reservoir has a vital economic, recreational and cultural importance to both the catchment area and the nation as a whole. At present the Sevan which has seen the dramatic - some 20m drop - in water level entailing grave ecological consequences to the whole of its ecosystem, is at the stage of recovery. Hence, it is very important to study basic parameters describing the ecological status of the lake, and their annual and seasonal dynamics. The Sevan water surface temperature (WST) is a key parameter which influences all ecological processes that occur in the Lake. Declining lake level has brought to reduction of water volume and consequently to earlier warming of lake water in spring and its earlier cooling in the fall. Besides, more frequent becomes the complete surface freezing of Lake Sevan. Remotely sensed imagery makes it possible to get immediate information on a regular basis about WST across the entire surface of lakes. The purpose of this particular research was to study the space and time dynamics of Lake Sevan WST using Landsat 8 satellite imagery. The advantage of Landsat8 images is a regular frequency of capturing and availability of another thermal band that helps reduce the atmospheric refraction-induced errors/deviations. This research involved Landsat imagery for 2000-2018. The images underwent preprocessing steps (radiometric calibration, atmospheric correction, normalization etc) and then Lake Sevan WSTs and their monthly and annual changes over the mentioned periods were derived using both thermal bands (b10, b11). The research confirmed the fact, that Lake Sevan surface completely or partly freezing with periodicity of 2-3 years, whereas before the water drop the periodicity was 15-20 years. The study of spatial distribution of WST data derived from remote sensing shows that the temperature data corresponds to the overall general picture of temperature for Lake Sevan. This research has indicated that remotely sensed images and Landsat 8 imagery in particular allow derive both WST data on a regular basis and retrospective data (since 2013).

Open access
A Landsat 8 OLI Satellite Data-Based Assessment of Spatio-Temporal Variations of Lake Sevan Phytoplankton Biomass

Abstract

The Sevan is one of the world’s largest highland lakes and the largest drinking water reservoir to the South Caucasus. An intensive drop in the level of the lake that occurred over the last decades of the 20th century has brought to eutrophication. The 2000s were marked by an increase in the level of the lake and development of fish farming. To assess possible effect of these processes on water quality, creating a state-ofthe- art water quality monitoring system is required. Traditional approaches to monitoring aquatic systems are often time-consuming, expensive and non-continuous. Thus, remote sensing technologies are crucial in quantitatively monitoring the status of water quality due to the rapidity, cyclicity, large-scale and low-cost. The aim of this work was to evaluate potential applications of the Landsat 8 Operational Land Imager (OLI) to study the spatio-temporal phytoplankton biomass changes. In this study phytoplankton biomasses are used as a water quality indicator, because phytoplankton communities are sensitive to changes in their environment and directly correlated with eutrophication. We used Landsat 8 OLI (30 m spatial resolution, May, Aug, Sep 2016) images converted to the bottom of atmosphere (BOA) reflectance by performing standard preprocessing steps (radiometric and atmospheric correction, sun glint removal etc.). The nonlinear regression model was developed using Landsat 8 (May 2016) coastal blue, blue, green, red, NIR bands, their ratios (blue/red, red/green, red/blue etc.) and in situ measurements (R2=0.7, p<0.05) performed by the Scientific Center of Zoology and Hydroecology of NAS RA in May 2016. Model was applied to the OLI images received for August and September 2016. The data obtained through the model shows that in May the quantity of phytoplankton mostly varies from 0.2 to 0.6g/m3. In August vs. May a sharp increase in the quantity of phytoplankton around 1-5 g/m3 is observable. In September, very high contents of phytoplankton are observed for almost entire surface of the lake. Preliminary collation between data generated with help of the model and in-situ measurements allows to conclude that the RS model for phytoplankton biomass estimation showed reasonable results, but further validation is necessary.

Open access