Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Gabriella Rétháti x
Clear All Modify Search
Open access

Gabriella Rétháti, Adrienn Vejzer, Barbara Simon, Ramadan Benjared and György Füleky

Abstract

Organic matter input into soils is essential regarding agricultural, environmental and soil science aspects as well. However, the application of the pyrolysed forms of biochars and materials with different organic matter content gained more attention in order to decrease the emission of the green house gases (CO2, N2O) from the soil. During pyrolysis, the materials containing high organic matter (biomass-originated organic matter) are heated in oxygen-free (or limited amount of oxygen) environment. As a result, the solid phase, which remains after eliminating the gases and liquid phase, is more stable compared to the original product, it cannot be mineralized easily in the soil and its utilization is more beneficial in terms of climatic aspects. Furthermore, it can improve soil structure and it can retain soil moisture and cations in the topsoil for long periods of time, which is very important for plants. In our experiment, the effects of biochar and bone char were examined on soils by zinc adsorption experiments. Based on our experiments, we concluded that the pyrolysis products can have significant Zn adsorption capacity compared to the soil. Bone ash can adsorb more Zn than the charcoal product. The Zn adsorption capacity of soils treated by pyrolysis products can be described by Langmuir adsorption isotherms. However, based on the amount of pyrolysis products, one or two term Langmuir isotherm fits well on the experiment data, which depends on the time the pyrolysis product has spent in the soil.

Open access

Gabriella Rétháti, Krisztina Pogácsás, Tamás Heffner, Barbara Simon, Imre Czinkota, László Tolner, Ottó Kelemen and Viktória Vargha

Abstract

We have monitored the behaviour of different polyethylene foils including virgin medium density polyethylene (MDPE), MDPE containing pro-oxydative additives (238, 242) and MDPE with pro-oxydative additives and thermoplastic starch (297) in the soil for a period of one year. A foil based on a blend of polyester and polylactic acid (BASF Ecovio) served as degradable control. The experiment was carried out by weekly measurements of conductivity and capacity of the soil, since the setup was analogous to a condenser, of which the insulating layer was the foil itself. The twelve replications allowed monthly sampling; the specimen taken out from the soil each month were tested visually for thickness, mechanical properties, morphological and structural changes, and molecular mass. Based on the obtained capacity values, we found that among the polyethylene foils, the one that contained thermoplastic starch extenuated the most. This foil had the greatest decrease in tensile strength and elongation at break due to the presence of thermoplastic starch. The starch can completely degrade in the soil; thus, the foil had cracks and pores. The polyethylene foils that contained pro-oxydant additives showed smaller external change compared to the virgin foil, since there was no available UV radiation and oxygen for their degradation. The smallest change occurred in the virgin polyethylene foil. Among the five examined samples, the commercially available BASF foil showed the largest extenuation and external change, and it deteriorated the most in the soil.