Search Results

You are looking at 1 - 2 of 2 items for

  • Author: G. Mucsi x
Clear All Modify Search
Open access

R. Szabó, I. Gombkötő, M. Svéda and G. Mucsi

Abstract

Present paper deals with the development of geopolymer foam prepared from ground F class power station fly ash. The effect of the fly ash fineness on the rheology of the geopolymer paste and the foam properties have been investigated. The raw fly ash was ground in a ball mill for various duration, 5, 10, 20, 30, 60 and 120 min. Geopolymer paste was prepared from the raw and ground fly ash with NaOH – sodium silicate mixture as alkaline activator. Geopolymer foam production was made using H2O2 as foaming agent. Additionally, the geopolymer material structure was investigated by Fourier transform infrared spectrometer, the foam cell structure was monitored using optical microscopy. The rheological behaviour of the geopolymer paste changed due to the grinding of fly ash (from Bingham plastic to Newtonian liquid). Grinding of fly ash has a significant effect on the physical properties as well as on the cell structure of the geopolymer foam.

Open access

K. Bohács, J. Faitli, L. Bokányi and G. Mucsi

Abstract

Due to the special characteristics of zeolites, they can be applied in a very wide range of industries, i.e. agricultural, environmental or water treatment purposes. Generally, high added value zeolite products are manufactured by micro- or nanogrinding. However, these processes require high energy input and cause significant wearing of the mill parts. Therefore, the optimization of zeolite grinding, as well as the control of its properties are of a great importance. In the present paper a Hungarian natural zeolite was mechanically activated in stirred media mill for various residence times in distilled water, meanwhile the particle size distribution and the grinding energy were measured. Additionally, on-line tube rheometer was used to study the rheology of the suspension during the grinding process. The particle interaction and the suspension aggregation stability were detected by zeta-potential measurements. Structural changes due to the mechanical activation process were monitored by FTIR. It was found that the material structure of the zeolite, as well as the rheological behaviour of the zeolite suspension and its aggregation stability had been altered due to the mechanical activation in the stirred media mill. It can be concluded that the zeolite product properties can be modified by mechanical activation in order to produce a high added value tailored material.