Search Results

You are looking at 1 - 10 of 21 items for

  • Author: G. Gumienny x
Clear All Modify Search
Open access

G. Gumienny

The Effect of Nodular Cast Iron Metal Matrix on the Wear Resistance

The paper presents results of studies on the effect of the nodular cast iron metal matrix composition on the abrasive and adhesive wear resistance. Nodular cast iron with different metal matrix obtained in the rough state and ADI were tested. To research of abrasive and adhesive wear the pearlitic and bainitic cast iron with carbides and without this component were chosen. The influence of the carbides amount for cast iron wear resistance was examined. It was found, that the highest abrasive and adhesive wear resistance under conditions of dry friction has a nodular cast iron with carbides with upper and lower bainite. Carbides in bainitic and pearlitic cast iron significantly increase the wear resistance in these conditions. In terms of fluid friction the largest wear resistance had cast iron group with the highest hardness.

Open access

G. Gumienny

Abstract

This article presents new kinds of carbidic ductile cast iron with different microstructures of the metal matrix. This cast iron was obtained using the Inmold method nodularisation which guarantees strong refining of graphite and the metal matrix components. A different microstructure of the metal matrix of the cast iron was obtained without any thermal treatment (unwrought) by a suitable composition of alloy additives. It was shown that by adding molybdenum, chromium, nickel and copper it is possible to obtain in the cast iron metal matrix consisting of upper bainite, its mixture with lower bainite or ausferrite in the casts with the wall thickness of 3/25 mm. The process of cast iron crystallization is presented and described with the help of the thermal and derivative analysis (TDA) curves. It also shows the thermal effects from transformation of austenite in solid state.

Open access

G. Gumienny

Abstract

This paper presents the results of the abrasive wear resistance of selected types of nodular cast iron, including ADI, cooperating with quartz sand and 100 grit abrasive paper. It has been shown that carbides in nodular cast iron cause an increase in wear resistance of 6 to 12% depending on the surface fraction of the carbides and type of the matrix. For the same unit pressure the mass loss of the cast iron cooperating with quartz sand is many times larger than the cast iron cooperating with abrasive paper. For both abrasives the highest wear resistance showed nodular cast iron with upper and lower bainite and carbides.

Open access

S. Pietrowski and G. Gumienny

Abstract

In this paper results of microsegregation in the newly developed nodular cast iron with carbides are presented. To investigate the pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The distribution of linear elements on the eutectic cell radius was examined. To investigate the microsegregation pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The linear distribution of elements on the eutectic cell radius was examined. Testing of the chemical composition of cast iron metal matrix components, including carbides were carried out. The change of graphitizing and anti-graphitizing element concentrations within eutectic cell was determined. It was found, that in cast iron containing Mo carbides crystallizing after austenite + graphite eutectic are Si enriched.

Open access

G. Gumienny and T. Giętka

Abstract

This work presents continuous cooling transformation diagrams for different kinds of carbidic nodular cast iron. We investigated the cast iron, chemical composition of which in nodular cast iron allows the obtainment of a metal matrix which consists of: pearlite, upper bainite and its mixture with lower bainite, ausferrite and martensite when the casts were cooled in the mold. The influence of the rate of cooling on the obtained microstructure and hardness of the casts was shown. The work describes the influence of the alloy additives on the curves of austenite decomposition in the carbidic nodular cast iron. Diagrams were plotted which enable an understanding of the kinetics of the transformations of austenite in carbidic nodular cast iron. The diagrams also indicate the possibility of obtaining pearlite, bainite, martensite and ausferrite with the established chemical composition and the wall thickness of the cast.

Open access

G. Gumienny, L. Klimek and B. Kurowska

Abstract

The paper presents the microstructure and selected properties of ausferritic nodular cast iron annealed at the temperature 520 and 550°C. This choice was dictated by the temperatures used in the practice of nitriding. Nodular graphite in cast iron was obtained with use of Inmold process. Cast iron containing molybdenum and copper ensuring obtaining an ausferrite in the cast iron matrix without the use of heat treatment of castings was tested. The effect of annealing temperature on the microstructure and the kind of fracture of the ausferritic nodular cast iron was presented. The effect of an annealing temperature on hardness, impact strength and the microhardness of ausferritic nodular cast iron matrix was shown too. The lamellar structure of phases in the cast iron matrix after annealing has been ascertained. There has been an increase in hardness of an annealed cast iron and microhardness of its matrix. The reduction in the impact strength of the cast iron annealed at 520 and 550°C was approximately 10-30%. Both an increase in the hardness of cast iron as well as an decrease in its impact strength is probably due to the separation of secondary carbides during the heat treatment.

Open access

G. Gumienny, M. Dondzbach and B. Kacprzyk

Abstract

The paper presents the results of studies of the effect of chromium concentration on the solidification process, microstructure and selected properties of cast iron with vermicular graphite. The vermicular graphite cast iron was obtained by an Inmold process. Studies covered the cast iron containing chromium in a concentration at which graphite is still able to preserve its vermicular form. The effect of chromium on the temperature of eutectic crystallization and on the temperature of the start and end of austenite transformation was discussed. The conditions under which, at a predetermined chromium concentration, the vermicular graphite cast iron of a pearlitic matrix is obtained were presented, and the limit concentration of chromium was calculated starting from which partial solidification of the cast iron in a metastable system takes place. The effect of chromium on the hardness of cast iron, microhardness of individual phases and surface fraction of carbides was disclosed.

Open access

G. Gumienny, B. Kacprzyk and J. Gawroński

Abstract

The paper presents the results of the research on the effect of copper on the crystallization process, microstructure and selected properties of the compacted graphite iron. Compacted graphite in cast iron was obtained using Inmold process. The study involved the cast iron containing copper at a concentration up to approximately 4%. The effect of copper on the temperature of the eutectic crystallization as well as the temperature of start and finish of the austenite transformation was given. It has been shown that copper increases the maximum temperature of the eutectic transformation approximately by 5°C per 1% Cu, and the temperature of the this transformation finish approximately by 8°C per 1% Cu. This element decreases the temperature of the austenite transformation start approximately by 5°C per 1% Cu, and the finish of this transformation approximately by 6°C per 1% Cu. It was found that in the microstructure of the compacted graphite iron containing about 3.8% Cu, there are still ferrite precipitations near the compacted graphite. The effect of copper on the hardness of cast iron and the pearlite microhardness was given. This stems from the high propensity to direct ferritization of this type of cast iron. It has been shown copper increases the hardness of compacted graphite iron both due to its pearlite forming action as well as because of the increase in the pearlite microhardness (up to approx. 3% Cu). The conducted studies have shown copper increases the hardness of the compacted graphite iron approximately by 35 HB per 1% Cu.

Open access

G. Gumienny, B. Kurowska, T. Szymczak and J. Gawroński

Abstract

The paper presents results of the research work concerning effects of nickel concentration on the crystallization process, microstructure and selected properties of the compacted graphite iron. Compacted graphite in the cast iron was obtained with use of the Inmold process. The study has comprised the cast iron containing nickel up to concentration providing obtainment of austenitic microstructure of the matrix. The effect of the nickel on temperature of the eutectic crystallization was specified. It has been presented composition of the cast iron matrix in function of nickel concentration in a casting with wall thickness of 3 mm and 24 mm. Moreover, it has been presented conditions defining the possibility of obtaining an austenitic and martensitic compacted graphite iron. Effect of the nickel on hardness of the cast iron was described.

Open access

T. Szymczak, G. Gumienny and T. Pacyniak

Abstract

The work presents the results of the investigations of the effect of the nitrogen (N2) refining time „τraf” and the gas output on the course of the crystallization process, the microstructure and the gassing degree of silumin 226 used for pressure casting. The refinement of the examined silumin was performed with the use of a device with a rotating head. The crystallization process was examined by way of thermal analysis and derivative analysis TDA. The performed examinations showed that the prolongation of the N2 refining time causes a significant rise of the temperature of the crystallization end of the silumin, „tL”, as well as a decrease of its gassing degree, „Z”. An increase of the nitrogen output initially causes an increase of the temperature „tL” and a drop of the gassing degree „Z”, which reach their maximal values with the output of 20 dm3/min. Further increase of the output causes a decrease of the value „tL” and an increase of „Z”. The examined technological factors of the refining process did not cause any significant changes in the microstructure of silumin 226.