Search Results

1 - 2 of 2 items

  • Author: Francesco Cafaro x
Clear All Modify Search


Scale modelling should be a very useful strategy for the design of lunar structures. Preventing structural damages in the lunar environment is crucial and scale models are helpful to achieve this aim. The size of these models must be scaled to take into account the different gravitational levels. Since the lunar gravity acceleration is about one-sixth of the terrestrial one, it follows that the models on Earth will be very smaller than the prototype to be realized on the Moon. This strategy will represent an opportunity for engineers working on lunar structure design, provided that the errors, both computational and experimental, related to the change of scale are quantified, allowing reliable extension of the physical scale modelling results to the prototype. In this work, a three-dimensional finite element analysis of walls retaining lunar regolith backfill is described and discussed, in order to provide preliminary results, which can guide a future experimental investigation based on physical scale-modelling. In particular, computational errors related to the scale effects are assessed, with respect to a virtual prototype of the lunar geotechnical structure, and compared with errors from other sources of discrepancy, like the adopted constitutive model, the variability of the geotechnical parameters and the calculation section used in the 3D analysis. The results seem to suggest the soundness of this strategy of modelling and are likely to encourage new research, both numerical and experimental, supporting the structure serviceability assessment.


Water infiltration through coal stocks exposed to weather elements represents a key issue for many old mining sites and coal-fired power plants from the environmental point of view, considering the negative impact on human health of the deriving groundwater, soil and air pollution. Within this context, the paper investigates the hydraulic behaviour of a self-weight compacted unsaturated coal mass and its impact on the numerical prediction of infiltration induced by rainfall events. In particular, the work focuses on the experimental investigation carried out at different representative scales, from the grain scale to physical modelling. The material, when starting from uncompacted conditions, seems to be characterized by metastable structure, which tends to collapse under imbibition. In addition, direct numerical predictions of the seepage regime through a partially saturated coal mass have been performed. As the compaction of the coal stock induced by dozers has not been taken into account, the numerical simulations represent a conservative approach for the assessment of chemical pollution hazard associated to water infiltration into a real stockpile under operational conditions.