Search Results

1 - 7 of 7 items

  • Author: Franc Vrečer x
Clear All Modify Search


This article presents an overview of using process analytical technology in monitoring the roller compaction process. In the past two decades, near-infrared spectroscopy, near-infrared spectroscopy coupled with chemical imaging, microwave resonance technology, thermal effusivity and various particle imaging techniques have been used for developing at-, off-, on- and in-line models for predicting critical quality attributes of ribbons and subsequent granules and tablets. The common goal of all these methods is improved process understanding and process control, and thus improved production of high-quality products. This article reviews the work of several researchers in this field, comparing and critically evaluating their achievements.

Spherical crystallization of drugs

Spherical crystallization of drugs is the process of obtaining larger particles by agglomeration during crystallization. The most common techniques used to obtain such particles are spherical agglomeration and quasi-emulsion solvent diffusion. Ammonia diffusion systems and crystallo-co-agglomeration are extensions of these techniques. By controlling process parameters during crystallization, such as temperature, stirring rate, type and amount of solvents, or excipient selection, it is possible to control the formation of agglomerates and obtain spherical particles of the desired size, porosity, or hardness. Researchers have reported that the particles produced have improved micromeritic, physical, and mechanical properties, which make them suitable for direct compression. In some cases, when additional excipients are incorporated during spherical crystallization, biopharmaceutical parameters including the bioavailability of drugs can also be tailored.


Ibuprofen, a weakly acidic non-steroidal anti-inflammatory drug having poor aqueous solubility, is a challenging drug for the development of pharmaceutical formulations, resulting in numerous research attempts focusing on improvement of its solubility and consequently bioavailability. Most studies have been done for solid dosage forms, with very little attention paid to parenterals. Hence, the main purpose of the present study was to enhance ibuprofen solubility as a result of formulation composition and the freeze drying process. Moreover, the purpose was to prepare a freeze dried dosage form with improved ibuprofen solubility that could, after simple reconstitution with water for injection, result in an isotonic parenteral solution. Solubility of ibuprofen was modified by various excipients suitable for parenteral application. Drug interactions with selected excipients in the final product/lyophilisate were studied by a combined use of XRPD, DSC, Raman and ss-NMR. Analyses of lyophilized samples showed solubility enhancement of ibuprofen and in situ formation of an ibuprofen salt with the alkaline excipients used.


This study explores the use of a statistical model to build a design space for freeze-drying two formulations with ibuprofen. A 2 × 3 factorial experimental design was used to evaluate independent variables (filling volume and annealing time) and responses as residual moisture content, specific surface area and reconstitution time. A statistical model and response surface plots were generated to define the interactions among the selected variables. The models constructed for both formulations suggest that 1 mL of filled volume and no annealing should be used to achieve optimal residual moisture content, specific surface area and reconstitution time. The proposed models were validated with additional experiments, in which the responses observed were mainly in close agreement with the predicted ones. Additionally, the established models demonstrate the reliability of the evaluation procedure in predicting the selected responses.

This study investigates the effect of particle size on the compression characteristics of wet- (fluid-bed granulation - FBG) and dry-granulated (slugging - DGS) tableting mixtures. Particle-size distribution, flowability, compressibility, using the Heckel and Walker model, compactibility and elastic recovery as well as friability and disintegration were determined and compared between the two particle size fractions (180-400 μm, 400-710 μm) and initial unsieved mixtures. The results showed that the particle size of granules had no effect on the compressibility of the FBG and DGS mixtures, due to the high fragmenting nature of the formulation used in this study. On the other hand, compactibility was particle size dependent, as larger-sized fractions showed higher crushing strength, lower friability, and lower elastic recovery. This was attributed to increased fragmentation of larger particles, allowing stronger bonding between uncontaminated surface areas. As a result of better rearrangement of particles, both initial tableting mixtures showed lower compressibility and lower compactibility compared to their sieved fractions.

The objective of this work was to investigate the influence of selected individual variables (binder content, inlet air temperature, and product endpoint temperature) of in situ fluid bed melt granulation on the granule particle size distribution and percentage of dissolved carvedilol using a three-factor, five-level circumscribed central composite design. Increased binder content had the effect of increasing the granule particle size and drug dissolution rate. The effect of inlet air temperature and product endpoint temperature was found to be more pronounced in case of granule particle size parameters. Within the studied intervals, the optimal quantity of binder as well as optimal process parameters were identified and validated using response surface methodology. Utilizing these optimal process and formulation parameters, successful scaling up of the fluid bed melt granulation process was carried out. Granule characteristics obtained at pilot scale are comparable to those obtained at laboratory scale.


Low oral bioavailability as a consequence of low water solubility of drugs is a growing challenge to the development of new pharmaceutical products. One of the most popular approaches of oral bioavailability and solubility enhancement is the utilization of lipid-based drug delivery systems. Their use in product development is growing due to the versatility of pharmaceutical lipid excipients and drug formulations, and their compatibility with liquid, semi-solid, and solid dosage forms. Lipid formulations, such as self-emulsifying (SEDDS), self-microemulsifying SMEDDS) and self- -nanoemulsifying drug delivery systems (SNEDDS) were explored in many studies as an efficient approach for improving the bioavailability and dissolution rate of poorly water-soluble drugs. One of the greatest advantages of incorporating poorly soluble drugs into such formulations is their spontaneous emulsification and formation of an emulsion, microemulsion or nanoemulsion in aqueous media. This review article focuses on the following topics. First, it presents a classification overview of lipid-based drug delivery systems and mechanisms involved in improving the solubility and bioavailability of poorly water-soluble drugs. Second, the article reviews components of lipid-based drug delivery systems for oral use with their characteristics. Third, it brings a detailed description of SEDDS, SMEDDS and SNEDDS, which are very often misused in literature, with special emphasis on the comparison between microemulsions and nanoemulsions.