Search Results

1 - 4 of 4 items

  • Author: Felipe García-Pinillos x
Clear All Modify Search

Abstract

This study aimed to describe the acute impact of extended interval training (EIT) on physiological and thermoregulatory levels, as well as to determine the influence of athletic performance and age effect on the aforementioned response in endurance runners. Thirty-one experienced recreational male endurance runners voluntarily participated in this study. Subjects performed EIT on an outdoor running track, which consisted of 12 runs of 400 m. The rate of perceived exertion, physiological response through the peak and recovery heart rate, blood lactate, and thermoregulatory response through tympanic temperature, were controlled. A repeated measures analysis revealed significant differences throughout EIT in examined variables. Cluster analysis grouped according to the average performance in 400 m runs led to distinguish between athletes with a higher and lower sports level. Cluster analysis was also performed according to age, obtaining an older group and a younger group. The one-way analysis of variance between groups revealed no significant differences (p≥0.05) in the response to EIT. The results provide a detailed description of physiological and thermoregulatory responses to EIT in experienced endurance runners. This allows a better understanding of the impact of a common training stimulus on the physiological level inducing greater accuracy in the training prescription. Moreover, despite the differences in athletic performance or age, the acute physiological and thermoregulatory responses in endurance runners were similar, as long as EIT was performed at similar relative intensity.

Abstract

The present study analyzed the acute effects of an incremental running test on countermovement jump (CMJ) and handgrip strength performance in endurance athletes, considering the effect of post-exercise recovery time and sex. Thirty-three recreationally trained long-distance runners, 20 men and 13 women, participated voluntarily in this study. The participants performed the Léger test, moreover, the CMJ and handgrip strength tests were carried out before and after the running test and during different stages of recovery (at the 1st min of recovery (posttest1), 5th min of recovery (posttest2), and 10th min of recovery (posttest3)). Two-way analysis of variance revealed a significant improvement in the CMJ (pre-posttest1, p = 0.001) and handgrip strength (pre-posttest2, p = 0.017) during recovery time. The Pearson’s Chi-2 test showed no significant relationship (p ≥ 0.05) between sex and post-activation potentiation (PAP). A linear regression analysis pointed to heart rate recovery as a predictive factor of CMJ improvement (PAP). In conclusion, despite significant fatigue reached during the Léger test, the long-distance runners did not experience an impaired CMJ and handgrip strength performance, either men or women, achieving an improvement (PAP) in posttest conditions. The results obtained showed no significant relationship between sex and PAP. Moreover, significant effect of recovery after running at high intensity on CMJ performance and handgrip strength was found. Finally, the data suggest that PAP condition can be predicted by heart rate recovery in endurance runners.

Abstract

This study aimed to examine the effect of running velocity on spatiotemporal parameters and lower-body stiffness of endurance runners, and the influence of the performance level on those adaptations. Twenty-two male runners (novice [NR], n = 12, and elite runners [ER], n = 10) performed an incremental running test with a total of 5 different running velocities (10, 12, 14, 16, 18 km/h). Each condition lasted 1 min (30 s acclimatization period, and 30 s recording period). Spatiotemporal parameters were measured using the OptoGait system. Vertical (Kvert) and leg (Kleg) stiffness were calculated according to the sine-wave method. A repeated measures ANOVA (2 x 5, group x velocities) revealed significant adaptations (p < 0.05) to increased velocity in all spatiotemporal parameters and Kvert in both NR and ER. ER showed a greater flight time (FT) and step angle (at 18 km/h) (p < 0.05), longer step length (SL) and lower step frequency (SF) (p < 0.05), whereas no between-group differences were found in contact time (CT) nor in the sub-phases during CT at any speed (p ≥ 0.05). ER also showed lower Kvert values at every running velocity (p < 0.05), and no differences in Kleg (p ≥ 0.05). In conclusion, lower SF and Kvert and, thereby, longer FT and SL, seem to be the main spatiotemporal characteristics of high-level runners compared to their low-level counterparts.

Abstract

This study aimed to analyse the effects of running velocity on spatiotemporal parameters and step variability in amateur endurance runners, according to sex. A group of 51 males and 46 females performed an incremental running test on a treadmill (10-16 km/h). Spatiotemporal parameters (contact and flight time, step length, step frequency and step angle [CT, FT, SL, SF, SA]) and step variability, in terms of within-participant standard deviation (SD), were recorded through the OptoGait System. The ANOVA showed significant differences in the magnitude of the spatiotemporal parameters as running velocity increased (p < 0.001). It also revealed significant differences in step variability (p < 0.005) over the entire running protocol. Between-sex differences in CT, SL, SL-normalized and SF (p < 0.05, ES = 0.4-0.8) were found. Differences were also found in step variability at high velocities (15-16 km/h), with males showing a greater SD than females. In conclusion, increasing running velocity makes CT shorter, FT and SL longer, and SF and SA greater in amateur endurance runners, changing step variability, regardless of sex. Additionally, some between-sex differences were found in spatiotemporal parameters and step variability.