Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Ewa Talik x
Clear All Modify Search
Open access

Józef S. Pastuszka, Jan Konieczyński and Ewa Talik

Abstract

The surface properties of particles emitted from six selected coal-fired power and heating plants in Poland have been studied in this work for the first time. Samples were collected beyond the control systems. Surface composition of the size-distributed particles was obtained by photoelectron spectroscopy (XPS).

The reflection of the smallest, submicron particles was also measured to calculate their specific/mass absorption. The surface layer of the emitted particles was clearly dominated by oxygen, followed by silicon and carbon. The sum of the relative concentration of these elements was between 85.1% and 91.1% for coarse particles and 71.8–93.4% for fine/submicron particles. Aluminum was typically the fourth or fifth, or at least the sixth most common element. The mass absorption of the submicron particles emitted from the studied plants ranged from 0.02 m2g-1 to 0.03 m2g-1. Only specific absorption obtained for the “Nowy Wirek” heating plant was significantly higher than in other studied plants probably because the obsolete fire grate is used in this heating plant.

The obtained results suggest that the power/heating-plant-emitted fine particles contain less carbonaceous material/elemental carbon on their surfaces than those that are typical in urban air.

Open access

Krzysztof Zdunek, Katarzyna Nowakowska-Langier, Rafal Chodun, Jerzy Dora, Sebastian Okrasa and Ewa Talik

Abstract

In 2011, we proposed a novel magnetron sputtering method. It involved the use of pulsed injection of working gas for the initiation and control of gas discharge during reactive sputtering of an AlN layer (Gas Injection Magnetron Sputtering — GIMS). Unfortunately, the presence of Al-Al bonds was found in XPS spectra of the AlN layers deposited by GIMS onto Si substrate. Our studies reported in this paper proved that the synchronization of time duration of the pulses of both gas injection and applied voltage, resulted in the elimination of Al-Al bonds in the AlN layer material, which was confirmed by the XPS studies. In our opinion the most probable reason of Al-Al bonds in the AlN layers deposited by the GIMS was the self-sputtering of the Al target in the final stage of the pulsed discharge.