Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Ewa Mijowska x
Clear All Modify Search
Open access

Wojciech Konicki, Iwona Pełech and Ewa Mijowska

Abstract

The removal of Ni2+ from aqueous solution by magnetic multiwalled carbon nanotube nanocomposite (MMWCNTs-C) was investigated. MMWCNTs-C was characterized by X-ray Diffraction method (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), surface area (BET), and Fourier Transform-Infrared Spectroscopy (FTIR). The effects of initial concentration, contact time, solution pH, and temperature on the Ni2+ adsorption onto MMWCNTs-C were studied. The Langmuir and Freundlich isotherm models were applied to fit the adsorption data. The results showed that the adsorption isotherm data were fitted well to the Langmuir isotherm model with the maximum monolayer adsorption capacity of 2.11 mg g–1. The adsorption kinetics was best described by the pseudo-second-order model. The thermodynamic parameters, such as ΔHo, ΔGo and ΔSo, were also determined and evaluated. The adsorption of Ni2+ is generally spontaneous and thermodynamically favorable. The values of ΔHo and ΔGo indicate that the adsorption of Ni2+ onto MMWCNTs-C was a physisorption process.

Open access

Jarosław Kaszewski, Sergiy Yatsunenko, Iwona Pełech, Ewa Mijowska, Urszula Narkiewicz and Marek Godlewski

Abstract

Calcination and microwave-assisted hydrothermal processing of precipitated zirconium dioxide are compared. Characterization of synthesized products of these two technologies is presented. The infiuence of thermal treatment up to 1200oC on the structural and spectroscopic properties of the so-obtained zirconium dioxide is examined. It was found that initial crystallization of material inhibits the crystal growth up to the 800oC (by means of XRD and TEM techniques), while the material crystallized from amorphous hydroxide precursor at 400oC, exhibits 26 nm sized crystallites already. It was found using the TG technique that the temperature range 100–200oC during the calcination process is equivalent to a microwave hydrothermal process by means of water content. Mass loss is estimated to be about 18%. Based on X-ray investigations it was found that the initial hydroxide precursor is amorphous, however, its luminescence activity suggests the close range ordering in a material.

Open access

Wojciech Konicki, Małgorzata Aleksandrzak and Ewa Mijowska

Abstract

In this study, the adsorption of Ni2+ and Fe3+ metal ions from aqueous solutions onto graphene oxide (GO) have been explored. The effects of various experimental factors such as pH of the solution, initial metal ion concentration and temperature were evaluated. The kinetic, equilibrium and thermodynamic studies were also investigated. The adsorption rate data were analyzed using the pseudo-first-order kinetic model, the pseudo-second-order kinetic model and the intraparticle diffusion model. Kinetic studies indicate that the adsorption of both ions follows the pseudo-second-order kinetics. The isotherms of adsorption data were analyzed by adsorption isotherm models such as Langmuir and Freundlich. Equilibrium data fitted well with the Langmuir model. The maximum adsorption capacities of Ni2+ and Fe3+ onto GO were 35.6 and 27.3 mg g−1, respectively. In addition, various thermodynamic parameters, such as enthalpy (ΔHO), entropy (ΔSO) and Gibbs free energy (ΔGO), were calculated.

Open access

Beata Zielińska, Beata Schmidt, Ewa Mijowska and Ryszard Kaleńczuk

Abstract

A PANI/NaTaO3 composite was successfully synthesized by an oxidative polymerization of aniline monomer in hydrochloric acid solution containing sodium tantalate. NaTaO3 at a monoclinic structure was produced via hydrothermal method. The photocatalytic activities of the unmodified NaTaO3 and PANI/NaTaO3 were evaluated for hydrogen generation from an aqueous HCOOH solution and under UV light irradiation. The results showed that the evolution rate of H2 increased significantly when NaTaO3 was modified with PANI. The enhancement of the photocatalytic activity of PANI/NaTaO3 composite was ascribed to the effective charge transfer and separation between NaTaO3 and PANI, which reduced their recombination. This indicates that PANI modification of tantalate photocatalysts may open up a new way to prepare highly efficient catalytic materials for H2 generation.

Open access

Magdalena Onyszko, Karolina Urbas, Malgorzata Aleksandrzak and Ewa Mijowska

Abstract

Graphene – novel 2D material, which possesses variety of fascinating properties, can be considered as a convenient support material for the nanoparticles. In this work various methods of synthesis of reduced graphene oxide with metal or metal oxide nanoparticles will be presented. The hydrothermal approach for deposition of platinum, palladium and zirconium dioxide nanoparticles in ethylene glycol/water solution was applied. Here, platinum/reduced graphene oxide (Pt/RGO), palladium/reduced graphene oxide (Pd/RGO) and zirconium dioxide/reduced graphene oxide (ZrO2/RGO) nanocomposites were prepared. Additionally, manganese dioxide/reduced graphene oxide nanocomposite (MnO2/RGO) was synthesized in an oleic-water interface. The obtained nanocomposites were investigated by transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), Raman spectroscopy and thermogravimetric analysis (TGA). The results shows that GO can be successfully used as a template for direct synthesis of metal or metal oxide nanoparticles on its surface with a homogenous distribution.