Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Eva Kridlová Burdova x
Clear All Modify Search
Open access

Monika Čuláková, Silvia Vilčeková, Jana Katunská and Eva Krídlová Burdová

Abstract

In world with limited amount of energy sources and with serious environmental pollution, interest in comparing the environmental embodied impacts of buildings using different structure systems and alternative building materials will be increased. This paper shows the significance of life cycle energy and carbon perspective and the material selection in reducing energy consumption and emissions production in the built environment. The study evaluates embodied environmental impacts of nearly zero energy residential structures. The environmental assessment uses framework of LCA within boundary: cradle to gate. Designed alternative scenarios of material compositions are also assessed in terms of energy effectiveness through selected thermal-physical parameters. This study uses multi-criteria decision analysis for making clearer selection between alternative scenarios. The results of MCDA show that alternative E from materials on nature plant base (wood, straw bales, massive wood panel) present possible way to sustainable perspective of nearly zero energy houses in Slovak republic

Open access

Zoran Apostoloski, Silvia Vilcekova, Eva Kridlová Burdova and Ludmila Meciarova

Abstract

Measurements of indoor air quality (IAQ) factors in Macedonian homes were aimed at the determination of indoor air temperature, relative humidity, sound pressure level, particulate matters (PMs) and total volatile organic compounds (TVOC). IAQ monitoring were performed in 25 houses during summer period. Results pointed out that sound pressure level were high in most of the houses with mean values of 66.60 dB (A) - 55.30 dB (A). Limit value of 40 dB (A) was exceeded in 72% of houses. Mean values of indoor air temperature and relative humidity ranged from 21.6°C to 28.6°C and from 35.8% to 60.2%, respectively. Mean concentrations of particulate matter concentrations ranged between 9.75 μg/m3 - 71.73 μg/m3 and 23.63 μg/m3 - 145.10 μg/m3 for PM2.5 and PM10, respectively. Level of PM10 were high in 30% of the monitored houses. 56% of houses achieved higher concentration of PM2.5 than permissible value of 25 μg/m3. Excessive presence of TVOC was recorded in monitored homes with mean values from 260 ppm to 791 ppm. Results show that high exposure by noise, concentrations of TVOC and PMs in indoor air can affect family house users. Therefore, the indoor air quality needs to be investigated and people need to be informed about possible health consequences.