Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Eren Bas x
Clear All Modify Search
Open access

Eren Bas

Abstract

In recent years, artificial neural networks have been commonly used for time series forecasting by researchers from various fields. There are some types of artificial neural networks and feed forward artificial neural networks model is one of them. Although feed forward artificial neural networks gives successful forecasting results they have a basic problem. This problem is architecture selection problem. In order to eliminate this problem, Yadav et al. (2007) proposed multiplicative neuron model artificial neural network. In this study, differential evolution algorithm is proposed for the training of multiplicative neuron model for forecasting. The proposed method is applied to two well-known different real world time series data.

Open access

Ufuk Yolcu and Eren Bas

Abstract

Fuzzy time series methods based on the fuzzy set theory proposed by Zadeh (1965) was first introduced by Song and Chissom (1993). Since fuzzy time series methods do not have the assumptions that traditional time series do and have effective forecasting performance, the interest on fuzzy time series approaches is increasing rapidly. Fuzzy time series methods have been used in almost all areas, such as environmental science, economy and finance. The concepts of labour force participation and unemployment have great importance in terms of both the economy and sociology of countries. For this reason there are many studies on their forecasting. In this study, we aim to forecast the labour force participation and unemployment rate in Poland and Turkey using different fuzzy time series methods.

Open access

Esra Akdeniz, Erol Egrioglu, Eren Bas and Ufuk Yolcu

Abstract

Real-life time series have complex and non-linear structures. Artificial Neural Networks have been frequently used in the literature to analyze non-linear time series. High order artificial neural networks, in view of other artificial neural network types, are more adaptable to the data because of their expandable model order. In this paper, a new recurrent architecture for Pi-Sigma artificial neural networks is proposed. A learning algorithm based on particle swarm optimization is also used as a tool for the training of the proposed neural network. The proposed new high order artificial neural network is applied to three real life time series data and also a simulation study is performed for Istanbul Stock Exchange data set.