Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Emiliano De Cristofaro x
Clear All Modify Search
Open access

Apostolos Pyrgelis, Carmela Troncoso and Emiliano De Cristofaro

Abstract

Information about people’s movements and the locations they visit enables an increasing number of mobility analytics applications, e.g., in the context of urban and transportation planning, In this setting, rather than collecting or sharing raw data, entities often use aggregation as a privacy protection mechanism, aiming to hide individual users’ location traces. Furthermore, to bound information leakage from the aggregates, they can perturb the input of the aggregation or its output to ensure that these are differentially private.

In this paper, we set to evaluate the impact of releasing aggregate location time-series on the privacy of individuals contributing to the aggregation. We introduce a framework allowing us to reason about privacy against an adversary attempting to predict users’ locations or recover their mobility patterns. We formalize these attacks as inference problems, and discuss a few strategies to model the adversary’s prior knowledge based on the information she may have access to. We then use the framework to quantify the privacy loss stemming from aggregate location data, with and without the protection of differential privacy, using two real-world mobility datasets. We find that aggregates do leak information about individuals’ punctual locations and mobility profiles. The density of the observations, as well as timing, play important roles, e.g., regular patterns during peak hours are better protected than sporadic movements. Finally, our evaluation shows that both output and input perturbation offer little additional protection, unless they introduce large amounts of noise ultimately destroying the utility of the data.

Open access

Alexandros Mittos, Bradley Malin and Emiliano De Cristofaro

Abstract

Rapid advances in human genomics are enabling researchers to gain a better understanding of the role of the genome in our health and well-being, stimulating hope for more effective and cost efficient healthcare. However, this also prompts a number of security and privacy concerns stemming from the distinctive characteristics of genomic data. To address them, a new research community has emerged and produced a large number of publications and initiatives. In this paper, we rely on a structured methodology to contextualize and provide a critical analysis of the current knowledge on privacy-enhancing technologies used for testing, storing, and sharing genomic data, using a representative sample of the work published in the past decade. We identify and discuss limitations, technical challenges, and issues faced by the community, focusing in particular on those that are inherently tied to the nature of the problem and are harder for the community alone to address. Finally, we report on the importance and difficulty of the identified challenges based on an online survey of genome data privacy experts.

Open access

Jamie Hayes, Luca Melis, George Danezis and Emiliano De Cristofaro

Abstract

Generative models estimate the underlying distribution of a dataset to generate realistic samples according to that distribution. In this paper, we present the first membership inference attacks against generative models: given a data point, the adversary determines whether or not it was used to train the model. Our attacks leverage Generative Adversarial Networks (GANs), which combine a discriminative and a generative model, to detect overfitting and recognize inputs that were part of training datasets, using the discriminator’s capacity to learn statistical differences in distributions. We present attacks based on both white-box and black-box access to the target model, against several state-of-the-art generative models, over datasets of complex representations of faces (LFW), objects (CIFAR-10), and medical images (Diabetic Retinopathy). We also discuss the sensitivity of the attacks to different training parameters, and their robustness against mitigation strategies, finding that defenses are either ineffective or lead to significantly worse performances of the generative models in terms of training stability and/or sample quality.