Search Results

1 - 2 of 2 items

  • Author: Elena Rodlovskaya x
Clear All Modify Search


The potential use of dry Spirulina platensis biomass to remove lead ions from aqueous solution was investigated. Effects of various parameters such as contact time, temperature, dosage of biosorbent, initial pH, and initial concentration of lead were investigated in the batch adsorption mode. The highest lead removal of 5.7 mg/g was obtained at pH 5, biomass dosage of 0.5 g, initial lead concentration of 60 mg/L. The Langmuir and Freundlich models fit the experimental data (R2 > 0.99), while the kinetic data was best described using the pseudo second-order kinetic model (R2 > 0.99). FTIR spectra indicated that the metal removal takes place through binding to OH, C=O and P=O groups. Lead was efficiently recovered from biomass by mineral acids, while using CH3COOH and NaOH as eluents the biomass maintained high biosorption capacity during three cycles. This study demonstrates the potential of using Spirulina platensis as biosorbent to remove lead from industrial wastewater.


Saccharomyces cerevisiae, waste biomass originated from beer fermentation industry, was used to remove metal ions from four copper-containing synthetic effluents: Cu-Fe, Cu-Fe-Ni, Cu-Fe-Zn, and Cu-Fe-Ni-Zn. The characterization of the biomass surface was investigated by Scanning Electron Microscopy and Fourier-transform Infrared Spectroscopy. The adsorption behavior of Saccharomyces cerevisiae for copper, iron, nickel and zinc ions in aqueous solution was studied as a function of pH, initial copper concentration, equilibrium time, and temperature. Langmiur, Freundlich, Temkin and Dubinin-Radushkevich equilibrium models have been assessed to describe the experimental sorption equilibrium profile, while pseudo-first order, pseudo-second order, Elovich and the intra-particle diffusion models were applied to describe experimental kinetics data. Maximum sorption capacities have been calculated by means of Langmuir equilibrium model and mean free sorption energies through the Dubinin-Radushkevich model. Thermodynamic analysis results showed that the adsorption of copper, iron and zinc was spontaneous and endothermic in nature, while of nickel exothermic. Saccharomyces cerevisiae can be successfully applied for complex wastewater treatment.