Search Results

1 - 10 of 12 items

  • Author: Eduard Ujházy x
Clear All Modify Search

Obituary for Prof. Helena Rašková, MD., DSc., Dr.h.c. *2 January, 1913 †13 April, 2010

Professor Rašková had been a member, and after her retirement, an honorary member of a number of scientific societies and editorial boards in Slovakia as well as abroad. To provide a list of all decorations and honours given to Professor Rašková would take a lot of space. Of them, let us mention only that she had been decorated with the Finnish Sibelius Medal, the French medal of the of Académie de Lutec, the Gold Medal of European Pharmacological Societies for her contributions to the development of world pharmacology, as well as all the decorations obtained from the Slovak Academy of Sciences: Gold Medal of the Slovak Academy of Sciences, Honourable Gold Medal of the Slovak Academy of Sciences for her contributions to biological sciences, and the Memorable Medal of the Slovak Academy of Sciences. Professor Rašková was an honorary member of the Learned Society of the Slovak Academy of Sciences

Important issues in developmental toxicity testing

Studies of individual development and its possible deterioration have been the concern since the 19th century, when Etienne Geoffroy de Saint-Hilaire (1772-1844) with his pioneer experiments opened the door for future experimental teratologists. Later scientists, focused on environmental agents which can alter embryonic and fetal development, such hyperthermia, malnutrition, pharmaceuticals, microbial toxins etc. Although the history of teratology involves many notable scientists, it has gained prominence after the big thalidomide tragedy in 1961. Principles of teratology were proposed later by James Wilson in his monograph Environment and Birth Defects (Wilson, 1973).

Developmental origin of chronic diseases: toxicological implication

Human epidemiological and experimental animal studies show that suboptimal environments in fetal and neonatal life exerts a profound influence on physiological function and risk of disease in adult life. The molecular, cellular, metabolic, endocrine and physiological adaptations to intrauterine nutritional conditions result in permanent alterations of cellular proliferation and differentiation of tissues and organ systems, which in turn can manifest by pathological consequences or increased vulnerability to chronic diseases in adulthood. Intrauterine growth restriction (IUGR) due to intrauterine development derangements is considered the important factor in development of such diseases as essential hypertension, diabetes mellitus, ischemic diseases of the heart, osteoporosis, respiratory, neuropsychiatric and immune system diseases.

An early life exposures to dietary and environmental exposures can have a important effect on epigenetic code, resulting in diseases developed later in life. The concept of the "developmental programming" and Developmental Origins of Adult Diseases (DOHaD) has become well accepted because of the compelling animal studies that have precisely defined the outcomes of specific exposures. The environmental pollullutants and other chemical toxicants may influence crucial cellular functions during critical periods of fetal development and permanently alter the structure or function of specific organ systems. Developmental epigenetics is believed to establish "adaptive" phenotypes to meet the demands of the later-life environment. Resulting phenotypes that match predicted later-life demands will promote health, while a high degree of mismatch will impede adaptability to later-life challenges and elevate disease risk. The rapid introduction of synthetic chemicals, environmental pollutants and medical interventions, may result in conflict with the programmed adaptive changes made during early development, and explain the alarming increases in some diseases.

Anxiolytic activity of pyridoindole derivatives SMe1EC2 and SMe1M2: behavioral analysis using rat model

Anxiety and mood disorders have become very significant affections in the last decades. According to WHO at least one mental disease occurred per year in 27% of EU inhabitants (more than 82 mil. people). It is estimated that by 2020, depression will be the main cause of morbidity in the developed countries. These circumstances call for research for new prospective drugs with anxiolytic and antidepressive properties exhibiting no toxicity and withdrawal effect and possessing beneficial properties, like antioxidant and/or neuroprotective effects. The aim of this study was to obtain information about psychopharmacological properties of pyridoindole derivatives SMe1EC2 and SMe1M2, using non-invasive behavioral methods in rats.

The battery of ethological tests (open field, elevated plus-maze, light/dark box exploration, forced swim test) was used to obtain information about anxiolytic and antidepressant activity of the pyridoindole derivatives. The substances were administered intraperitoneally 30 minutes before the tests at doses of 1, 10 and 25 mg/kg.

In the behavioral tests, SMe1EC2 was found to exert anxiolytic activity in elevated plus maze with no affection of locomotor activity. The highest dose of SMe1M2 increased the time spent in the lit part of the Light/Dark box, however this result was influenced by inhibition of motor activity of the rats. Similar findings were observed also in elevated plus-maze, although these results were not statistically significant.

In conclusion, from the results of our study it is evident that both pyridoindoles acted on the CNS. In the highest dose, SMe1M2 was found to possess rather sedative than anxiolytic or antidepressant activity.

Experimental modeling of hypoxia in pregnancy and early postnatal life

The important role of equilibrium of environmental factors during the embryo-fetal period is undisputable. Women of reproductive age are increasingly exposed to various environmental risk factors such as hypoxia, prenatal viral infections, use of drugs, smoking, complications of birth or stressful life events. These early hazards represent an important risk for structural and/or functional maldevelopment of the fetus and neonates. Impairment of oxygen/energy supply during the pre- and perinatal period may affect neuronal functions and induce cell death. Thus when death of the newborn is not occurring following intrauterine hypoxia, various neurological deficits, including hyperactivity, learning disabilities, mental retardation, epilepsy, cerebral palsy, dystonia etc., may develop both in humans and in experimental animals. In our animal studies we used several approaches for modeling hypoxia in rats during pregnancy and shortly after delivery, i.e. chronic intrauterine hypoxia induced by the antiepileptic drug phenytoin, neonatal anoxia by decreased oxygen saturation in 2-day-old pups. Using these models we were able to test potential protective properties of natural (vitamin E, melatonin) and synthetic (stobadine) compounds. Based on our results, stobadine was also able to reduce hypoxia-induced hyperactivity and the antioxidant capacity of stobadine exceeded that of vitamin E and melatonin, and contrary to vitamin E, stobadine had no adverse effects on developing fetus and offspring.

Safety assessment of the pyridoindole derivative SMe1EC2: developmental neurotoxicity study in rats

The present study deals with effect of prenatal and neonatal administration of the synthetic pyridoindole derivative SMe1EC2 (2-ethoxycarbonyl-8-methoxy-2,3,4,4a, 5,9b-hexahydro-1H-pyrido-[4,3b] indolinium chloride) on postnatal and neurobehavioral development of the rat offspring. The substance tested was administered to pregnant rats orally in the doses 5, 50 and 250 mg/kg from day 15 of gestation to day 10 post partum (PP). From the day 4 PP, the postnatal development and neurobehavioral characteritics of offspring were evaluated. The following variables were observed: body weight, pinna detachment, incisor eruption, ear opening, eye opening, testes descent and vaginal opening, righting reflex, negative geotaxia, startle reflex, dynamic air righting and exploratory behavior in a new environment. No maternal death, abortion or dead fetuses occurred either in the control or SMe1EC2 groups. Dynamic righting reflex was delayed one day in the groups of animals treated via their mothers with 5 and 50 mg/kg SMe1EC2. The delay in the development of this reflex was only transient. On day 20 PP, all pups tested had a positive score of the reflex. Administration of SMe1EC2 did not reveal any significant changes in other variables of somatic growth and maturation, reflex and neuromotor development and exploratory behavior, either of young or adult animals of both genders, assessed by analysis of variance.

Early assessment of the severity of asphyxia in term newborns using parameters of blood count

Acute perinatal asphyxia is a major cause of death and neurological injury in newborn infants. Severe asphyxia can occur in infants around the time of birth for several reasons. The aim of our study was to find the most sensitive, easily obtainable and fast assessable parameter of the presence and quantification of asphyxia.

In our study 39 term newborns (15 healthy term newborns and 24 asphyxial term newborns), from vaginal deliveries admitted within 24 hours of life were monitored and parameters of blood count from venous blood were assessed. Laboratory findings of blood count parameters revealed significant differences between term asphyxial and healthy newborns in erythrocyte count and hemoglobin and hematocrit values.

Hematological changes observed early after delivery can determine the duration of hypoxemia (acute vs. chronic) and asphyxia of short duration may be accompanied without occurrence of polyglobulia.

ABSTRACT

Teratology is the science that studies the causes, mechanisms, and patterns of abnormal development. The authors present an updated overview of the most important milestones and stages of the development of modern teratology. Development of knowledge and society led to the recognition that causes of congenital developmental disorders (CDDs) might be caused by various mechanical effects, foetal diseases, and retarded or arrested development of the embryo and foetus. Based on the analysis of the historical development of hypotheses and theories representing a decisive contribution to this field, we present a survey of the six Wilson´s fundamental principles of teratology. The aim of observing these principles is to get insight into developmental relations and to understand mechanisms of action on the level of cell populations (elementary morphogenetic processes), tissues and organs. It is important to realise that any negative intervention into the normal course of these processes, either on genetic or non-genetic basis, inevitably leads to a sequence of subsequent changes resulting in CDDs. Moreover, the classical toxicologic monotonic doseresponse paradigm recently has been challenged by the so-called “low dose-hypothesis”, particularly in the case of endocrine active substances. These include some pesticides, dioxins, polychlorobiphenyls (PCBs), and bisphenol A. Despite modern approaches of molecular biology and genetics, along with top diagnostic techniques, we are still not able to identify the actual cause in more than 65 to 70% of all congenital defects classified as having an unknown etiology. Today CDDs include any birth defect, either morphological, biochemical, or behavioural.

Abstract

Despite modern approaches in molecular biology and genetics, we are still not able to identify the actual cause in more than 50% of all congenital defects. One-half of the unidentified cases is referred to as “multifactorial”. Detailed prenatal investigation of the fetus can discover the presence of congenital abnormality, which can worsen the process of postnatal adaptation. Retrospective analysis of newborns admitted to the Neonatal Department of Intensive Medicine (NDIM) in 2012-2016 with the aim to analyze how the process of postnatal adaptation can be changed by the presence of congenital abnormalities of lip and palate. During a five-year period, 13 newborns were admitted to NDIM (2 premature; 11 term newborns). Chromosomal abnormality was confirmed in one patient (Down syndrome) and in one patient suspicion of Patau syndrome was found. Twelve newborns had complete cheilognathopalatoschisis. Two premature newborns and two term newborns had perinatal asphyxia. In this group of patients, 33% had respiratory insufficiency without the presence of congenital heart abnormality, 66% had congenital heart abnormality with respiratory insufficiency, and 2 patients had feeding problems. Only one patient had a positive family history. The diagnosis of complete cheilognathopalatoschisis was confirmed prenatally only in 9 patients. We confirmed that clinical consequences of congenital abnormalities of lip and palate depend on the nature, localization and range of abnormalities, as well as on the genetic background and accompanying congenital abnormalities. Prenatal confirmation of the presence of congenital abnormalities has an important influence on the postnatal management of a patient.

Abstract

About 3% of pregnant women are treated with antidepressant drugs during gestation. After delivery the number of treated women increases to 5 to 7%. Most prescribed antidepressants in pregnancy are selective serotonin re-uptake inhibitors and/or serotonin and noradrenaline re-uptake inhibitors, such as fluoxetine, paroxetine, sertraline, citalopram and venlafaxine (VENF). Despite the fact that VENF has been assigned to pregnancy category C by the FDA, experimental studies with this drug are rare. The aim of this pilot study was to investigate the effect of prenatal administration of VENF on early postnatal development of rat offspring and selected biochemical variables at weaning of pups. Pregnant female Wistar rats were treated with VENF from day 15 to 20 of gestation at the doses of 7.5, 37.5 and 70 mg/kg. Females were allowed to spontaneously deliver their pups. After delivery the pups were inspected for viability, gross malformation and they were weighed on day 0, 4 and 21 post partum. On day 21 post partum, the pups were killed, brains were removed from the skulls and blood samples were collected for biochemical assay (proteins, glucose-GOD, glucose-HEX, lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase and total antioxidant status). The study showed that prenatal VENF administration resulted in a mild maternal intoxication manifested by decreased body weight gain of pregnant females. There was no effect of the drug tested on the body and brain weights of offspring. No obvious morphological alterations were observed in the delivered pups. Similarly, there were no changes in the selected biochemical variables determined.