Search Results

You are looking at 1 - 6 of 6 items for

  • Author: E.H. Lee x
Clear All Modify Search
Open access

E.-H. Lee, K.-M. Kim, W.-Y. Maeng and D.-H. Hur

Abstract

After preparing aqueous suspensions from magnetite particles with a poly-acrylic acid, we investigated the effects of several experimental parameters. We characterized the stability of the suspensions using visual inspection, sedimentation, adsorption, and thermal stability of the dispersant. The dispersion stability is affected by the solution pH, the concentrations of magnetite particles, the molecular weight, the concentration of the dispersants, and the temperature. The stability of the suspensions increased as the concentration of the dispersant and the temperature increased. In terms of the molecular weights of the dispersant, the suspensions with dispersant of low-molecular weight (1800) were more stable than those of high-molecular weight (250000) at room temperature. However, at high temperature the suspensions with high-molecular weight showed stability. The adsorption efficiency of the dispersant was very low. The dispersant of high-molecular weight showed a higher thermal integrity than that of low-molecular weight. From this work, we obtained the optimum conditions for stable aqueous suspensions of magnetite particles.

Open access

J-H. Kim, H. Lee, E-K. Bae, H. Shin, J-S. Lee, K-S. Kang and S-Y. Park

Abstract

Elicitors trigger defence responses in plant cells through signal transduction pathways, leading to accumulation of pathogenesis-related (PR) proteins and, eventually, pathogen resistance. To understand defence responses of hybrid poplar (Populus alba × P. tremula var. glandulosa), we isolated and characterized upregulated genes in poplar cells by laminarin-induced elicitation using suppression subtractive hybridization (SSH) and cDNA microarray approaches. A total of 1,269 clones in the SSH library were sequenced and a cDNA microarray, containing 265 unique subtracted clones, was fabricated. From the microarray results, 37 clones were found to be upregulated by laminarin treatment and their putative functions are discussed. Genes involved in signal transduction, transcriptional regulation, and phytohormone biosynthesis were upregulated. Other genes encoding PR proteins, peptidases, and an ABC transporter, as well as genes involved in lignification and protein synthesis and turnover, were also identified. Our results suggest that well-organized defence responses, from signal transduction to accumulation of PR proteins, are activated in poplar cells by laminarininduced elicitation and could contribute to resistance against pathogens.

Open access

H.-E. Lee, Y.Su. Kim, J.K. Park and S.-T. Oh

Abstract

Microstructure evolution of Ni-based oxide dispersion-strengthened alloy powders with milling time is investigated. The elemental powders having a nominal composition of Ni-15Cr-4.5Al-4W-2.5Ti-2Mo-2Ta-0.15Zr-1.1Y2O3 in wt % were ball-milled by using horizontal rotary ball milling with the change of milling velocity. Microstructure observation revealed that large aggregates were formed in the early stages of ball milling, and further milling to 5 h decreased particle size. The average crystalline size, estimated by the peak broadening of XRD, decreased from 28 nm to 15 nm with increasing milling time from 1 h to 5 h. SEM and EPMA analysis showed that the main elements of Ni and Cr were homogeneously distributed inside the powders after ball milling of 5 h.

Open access

H.-Y. Gil, E. H. Lee, I.-Y. Choi, M. S. Roh and C. S. Chang

Abstract

Pinus parviflora Siebold et Zucc. on Ulleung Island, Korea, has been proposed to be more closely related to P. armandii Franch. because both have long leaves and seeds that are either wingless or have very short wings. Randomly amplified polymorphic DNA (RAPD) markers using nine primers and sequence analysis of the trnG gene and the matK gene and morphological characteristics of seeds and cones were used to assess the genetic relatedness of this taxon on Ulleung Island with P. armandii in China and P. parviflora in Japan. This current study showed that Pinus armandii from China, P. parviflora from Japan, and P. parviflora populations of Ulleung Island formed distinct groups that were separated from each other. P. parviflora from Ulleung Island grouped with P. parviflora from Japan, rather than P. armandii from China based on the RAPD dendrogram and SNPs in matK. It is believed that P. parviflora on Ulleung Island is genetically well differentiated, indicating limited gene flow from Japan, although cones and seeds of P. parviflora on Ulleung Island are more similar to var. parviflora in southern Japan than P. armandii in central China. It seems that the entities that comprise P. parviflora exhibit widely overlapping ranges in morphological attributes except leaf length.

Open access

D.-J. Kim, K.M. Kim, J.H. Shin, Y.M. Cheong, E.H. Lee, G.G. Lee, S.W. Kim, H.P. Kim, M.J. Choi, Y.S. Lim and S.S. Hwang

Abstract

Fast water flow facilitates ferrous ion transport leading to flow accelerated corrosion (FAC) of carbon steel and the possibility of a large accident through a failure of a secondary pipe in a nuclear power plant. Ion transport is directly linked to oxide properties such as the thickness, chemical composition and porosity. This work deals with a precise observation of the cross section of the corroded specimen focusing on an oxide passivity and its thickness using SEM (scanning electron microscope) and TEM (transmission electron microscope) as well as an apparent weight loss and a surface observation for the specimens corroded using a rotating cylindrical electrode autoclave system in pure water of pH 7 at 150°C having dissolved oxygen below 1 ppb within a flow rate range of 0 to 10 m/s. The Cr content in steel was changed from 0.02 to 2.4 wt%. Increasing the Cr content in the alloy, the FAC rate and oxide thickness decreased. The oxide porosity tends to decrease with the Cr content and immersion time owing to the development of Cr containing oxide. The oxidation behavior is not changed with the immersion time.

Open access

Paulo H. Marchetti, Mauro A. Guiselini, Josinaldo J. da Silva, Raymond Tucker, David G. Behm and Lee E. Brown

Abstract

In-line and traditional lunge exercises present differences in technique as lower limb positioning (anterioposterior), and medio-lateral (ML) balance may differentially affect primary and stabilizer muscles. The purposes of this study were to examine ML balance and muscle activation in anterior and posterior leg positions between in-line and traditional lunge exercises. Fifteen young, healthy, resistance-trained men (25 ± 5 years) performed 2 different lunge exercises (in-line and traditional) at their 10 repetition maximum in a randomized, counterbalanced fashion. Surface electromyography measured muscle activation of the vastus lateralis, biceps femoris, gluteus maximus, and gluteus medius. ML balance was measured with a Wii Fit Balance Board. The vastus lateralis activity was not significantly different between exercises or leg positions. The biceps femoris activity was not significantly different between exercises, however, it was significantly greater in the anterior compared to the posterior position for the in-line (p = 0.003), and traditional lunge (p < 0.001). The gluteus maximus activity was not significantly different between exercises, however, it was significantly greater in the anterior compared to posterior position for the in-line (p < 0.001) and traditional lunge (p < 0.001). ML balance was significantly greater in the in-line exercise in the anterior limb (p = 0.001). Thus, both in-line and traditional lunge exercises presented similar overall levels of muscle activation, yet the anterior limb generated the highest biceps femoral and gluteus maximus muscle activation when compared to the posterior limb. The in-line lunge presents greater ML balance when compared to the traditional lunge exercise.