Search Results

1 - 3 of 3 items

  • Author: Dušan Starek x
Clear All Modify Search
Turbidite sedimentology, biostratigraphy and paleoecology: A case study from the Oligocene Zuberec Fm. (Liptov Basin, Central Western Carpathians)

Abstract

Outcrops of a thick turbiditic succession are exposed on the northern bank of the Liptovská Mara reservoir near Liptovská Ondrašová and Ráztoky. The section consists of rhythmic, predominantly thin- to medium-bedded turbidites of the Rupelian age. Their biostratigraphy is based on the calcareous nannofossils. Facies associations of these deposits represent different components of depositional lobe deposits in the turbidity fan system, including mainly the lobe fringe and lobe distal fringe/inter-lobe facies associations and locally the medium bedded deposits of the lobe off-axis facies association. This interpretation is supported by statistical analysis. The deep-sea turbiditic deposits contain trace fossil associations, which include deep-tier fodinichnia and domichnia up to shallow-tier graphoglyptids. Paleocurrent measurements indicate that the majority of sedimentary material was transported from SW and W.

Open access
Quaternary exhumation of the Carpathians: a record from the Orava-Nowy Targ Intramontane Basin, Western Carpathians (Poland and Slovakia)

Quaternary exhumation of the Carpathians: a record from the Orava-Nowy Targ Intramontane Basin, Western Carpathians (Poland and Slovakia)

The Neogene-Quaternary infill of the Orava-Nowy Targ Intramontane Basin comprises two tiers showing contrasting lithologies. The Neogene tier is largely composed of claystones and siltstones, whereas the Quaternary tier is dominated by gravels. The two sequences are separated by an erosional surface underlain by a regolith. Deposition of the Neogene sequence took place during subsidence of the basin. No prominent relief existed in the area of the present-day mountains actually surrounding the basin at that time. The regolith started to form at the onset of basin inversion. Still, no prominent relief existed in the present-day mountains. The onset of deposition of Quaternary gravels in the basin corresponds to acceleration of uplift of the surrounding mountains, which has been continuing until now. The Pieniny Klippen Belt has been subject to erosion, at least locally, from the deposition of the basal part of the Neogene sequence filling the Orava-Nowy Targ Basin until present times. In contrast, the Paleogene cover of the Tatra Mts was removed only during the Quaternary.

Open access
Large-volume gravity flow deposits in the Central Carpathian Paleogene Basin (Orava region, Slovakia): evidence for hyperpycnal river discharge in deep-sea fans

Abstract

The deep-water clastic systems of the Central Carpathian Paleogene Basin contain megabeds, which are developed in distinctive stratigraphic horizons and can be traced over long distances. These beds are characterized by great individual thickness (4-13 m), uniform lithology and internal structures. On the basis of their lithology, sedimentary structures and sequence development, the megabeds are characterized by 15 individual facies and interpreted from the viewpoint of flow hydrodynamics. The grain-size distribution and internal structures of the megabeds point to their deposition from uniform turbulent flows. The main controlling factor for generation of such large voluminous flows is inferred in the sea-level changes, when a relative rising of sea level during the Eocene/Oligocene boundary was responsible for long-lasting accumulation of the clastic supply at the basin margins. The large volume of detritus from river discharge and ravinement surfaces of flooded land was accumulated on the shore and in the conduit heads where the sediment was remobilized by other triggers. The flows generated by catastrophic floods during the early Rupelian sea-level lowstand are thought to be the most probably triggering mechanism. The large highly erosive hyperpycnal flows from flooding rivers could erode accumulated deposits in the conduit or on steeper basin-margin slopes and could cause progressive increase of the sand volume in the flow. Conduit flushing appears to be the most probable source of sediment for the very large voluminous flows that were responsible for deposition of the Orava megabeds

Open access