Search Results

1 - 5 of 5 items

  • Author: Dorota Kostrzewa-Nowak x
Clear All Modify Search
Assessment of selected exercise-induced CD3+ cell subsets and cell death parameters among soccer players

Summary

Background

Molecular mechanisms of biological adaptation to training in professional soccer players are unclear. The aim of this study was to assess the impact of progressive physical effort on peripheral T-cells and their molecular response.

Methods

Thirteen soccer players form Pogo Szczecin S.A., a top league soccer club, (median age 21, range 18– 31, years old) performed progressive efficiency tests on a mechanical treadmill until exhaustion at the start (period 1) and the end (period 2) of a competition round. Venous blood T-lymphocyte subsets, selected hallmarks of cell death and plasma cytokine levels were determined by flow cytometry three times: pre-exercise, post-exercise, and in recovery.

Results

Although significant changes in T, Tc and Tc-naïve cell percentages were found in both periods, Th-naïve cell percentages were altered only in period 1. Post-exercise IL-10 plasma levels were higher than pre-exercise, while an increase in TNF-α levels was noticed in recovery from both periods. An increase in recovery IL-12p70 levels was observed in the second period. Increases in the percentage of T-cells with disrupted mitochondrial membrane potentials, elevated levels of phosphorylated H2AX histones and increases in early apoptotic T-cells were also observed.

Conclusions

The immune system in soccer players creates space for naïve CD3+CD8+ cells by inducing mechanisms of cell death. It seems that the cumulative effect of physical activity during a competition round induced an adaptive mechanism, since the cell death process was induced faster during period 2.

Open access
Comparison of selected CD45+ cell subsets’ response and cytokine levels on exhaustive effort among soccer players

Summary

Background

Immunological alterations may led to the reduction in capacity and endurance levels in elite athletes by e.g. increased susceptibility to infections. There is a need to explain the impact of intensive physical effort on the CD4+ memory T cell subsets.

Methods

Fourteen participants median aged 19 years old (range 17–21 years) were recruited form Pogoń Szczecin S.A., soccer club. They performed progressive efficiency test on mechanical treadmill until exhaustion twice: during preparatory phases to spring and autumn competition rounds. We examined the influence of exhaustive effort on the selected CD45+, especially CD4+ memory T cell subsets and inflammation markers determined before, just after the test and during recovery time.

Results

Significant changes in total CD45+ cells and decrease in T lymphocytes percentage after the run was observed. Significant fluctuations in T cells’ distribution were related not only to the changes in Th or Tc subsets but also to increase in naïve T cell percentage during recovery. Increase in TNF-α and IL-8 post-exercise, IL-6 and IL-10 plasma levels in recovery was also found.

Conclusions

The novel finding of our study is that the run performed on mechanical treadmill caused a significant release of CD4+ T naïve cells into circulation. Post-exercise increase in circulating NK cells is related with fast biological response to maximal effort. However, at the same time an alternative mechanism enhancing inflammation is involved.

Open access
T cell subsets’ distribution in elite karate athletes as a response to physical effort

Summary

Background

During karate fight muscles work at a very high intensity, and their contractions are extremely strong. The movement pattern contains a great number of feints, dodges, frequent changes in movements’ tempo and direction, hits and kicks, all of which is highly stressful for athlete’s organism, including the immune system.

Methods

T lymphocyte subsets’ distribution and selected cytokines in peripheral blood of three elite karate athletes aged 30 years old (range 21–31 years) with minimum 15 years of training experience were analysed in two experiments: at the beginning of the preparatory phase (a progressive test until exhaustion; an analysis of immune system’s selected parameters and cardiorespiratory fitness measures, including VO2max, VE, AT, MVV, MET, Rf), and during the start-up period (Karate Championships; an analysis of selected parameters of the immune system).

Results

Maximal effort caused an increase in total lymphocyte percentage (p<0.05). A decrease in Th cells in recovery (p<0.05 compared to post-exercise), and an increase in Th naïve cells in recovery (p<0.05) were observed. A significant increase in CD8+ central memory cells (p<0.05) was found only after the progressive test, and no changes in both central and effector memory subsets of CD4+ cells during the first experiment. An increase (p<0.05) in Treg and Th1 and a decrease (p<0.05) in Th2 cells’ distribution during recovery time were found. Additionally, changes (p<0.05) in TNF-α, IL-6, IL-8, IL-10 and IL-12p70 were observed.

Conclusion

Post-effort disorder in immune balance activated compensation pathways involving CD4+ cells. Treg and Th1 cells seem to be subsets of key importance involved in the anabolic effect of physical effort, at least among karate athletes.

Open access
The Impact of the Progressive Efficiency Test on a Rowing Ergometer on White Blood Cells Distribution and Clinical Chemistry Changes in Paralympic Rowers During the Preparatory Stage Before the Paralympic Games in Rio, 2016 – A Case Report

Abstract

There is a large gap in knowledge regarding research on post-exercise blood changes in disabled athletes. There are relatively few data on adaptive mechanisms to exercise in disabled athletes, including disabled rowers. Two rowers from a Polish adaptive rowing settle TAMix2x that qualified for the Paralympic Games in Rio, 2016 took part in this study. They performed a progressive test on a rowing ergometer until exhaustion. The cardiorespiratory fitness measures, complete blood count, white blood cells’ distribution and 30 clinical chemistry variables describing laboratory diagnostic profiles and general health were determined. The extreme effort induced changes in all studied metabolites (glucose, creatinine, urea, uric acid, total and direct bilirubin), albumin, total protein levels in both participants. Furthermore, a post-exercise increase in aspartate transaminase activity, yet a 2-fold decrease during the recovery time in both rowers were found. White blood cell count increased 2-fold after the test. The percentages of natural killer cells were higher and total T lymphocytes were lower after the exercise protocol. There were higher percentages of suppressor/cytotoxic and lower percentages of helper/inducer T lymphocyte subsets in both studied rowers. No changes in B lymphocytes distribution were observed. Lack of inflammatory symptoms during the experiment suggests a high level of rowers’ biological adaptation to the physical effort. The different changes in physiological, biochemical and immunological variables are related to the adaptive mechanism to physical exercise allowing for improvement of performance.

Open access
Post-Effort Changes in Activity of Traditional Diagnostic Enzymatic Markers in Football Players’ Blood / Promene U Aktivnostima Tradicionalnih Dijagnostičkih Enzimskih Markera U Krvi Fudbalera Posle Fizičkog Naprezanja

Summary

Background: Long-term and intensive physical effort causes metabolic and biochemical adaptations for both athletic and non-athletic objectives. Knowing the importance of aerobic training in football players, the aim of this study was to evaluate changes in the activity of: creatinine kinase (CK), creatine kinase MB (CKMB), lactate dehydrogenase (LDH), ahydroxybutyrate dehydrogenase (HBDH), cholinesterase (ChE) and alkaline phosphatase (ALP) in response to a semi-long distance outdoor run under aerobic conditions among both female and male football players.

Methods: Sixteen participants aged 21.9±2 years (women) and 18.4±0.5 years (men), all of them voluntarily recruited football players, took part in an outdoor run, the women covering a distance of 7.4±0.3 km while men covered a distance of 10.7±1.0 km. Plasma activities of the studied enzymes were determined using an appropriate diagnostic assay kit.

Results: Our results indicate that total LDH activity could be a useful tool in evaluating physical fitness among athletes. We simultaneously established that ChE could not be a marker useful in assessing metabolic response to physical effort in athletes. Moreover, our results suggest that post-effort changes in ALP activity might be used to estimate early symptoms of certain vitamin deficiencies in an athlete’s diet.

Conclusions: We confirmed that the assessment of activity of selected traditional diagnostic enzymatic markers provides information about muscle state after physical effort.

Open access