Search Results

1 - 3 of 3 items

  • Author: Dindar S. Bari x
Clear All Modify Search
Psychological correlates of nonspecific electrodermal responses

Abstract

Spontaneous fluctuations in electrodermal responses are known as nonspecific electrodermal responses (NS.EDRs). The use of NS.EDRs as a tool in applied psychophysiological research has resulted in a variety of publications. NS.EDRs are examined separately as associated with the (as a biomarker of) levels of anxiety. The aim of this study was to compare changes (in terms of amplitude, frequency and time components) in NS.EDRs at two different (pre and post of an external stimulus) resting phases. NS.EDRs (nonspecific skin conductance responses (NS.SCRs), nonspecific skin potential responses (NS.SPRs), and nonspecific skin susceptance responses (NS.SSRs)) were recorded from 50 apparently healthy volunteers simultaneously at the same skin area. They were scored as NS.SCRs and NS.SSRs for changes greater than 0.02 μS and NS.SPRs greater than 0.02 mV. It was found that NS.EDRs, in particular NS.SCRs and NS.SPRs, were significantly changed in the second resting period, following the specific stimulus. More specifically, the amplitude of NS.EDRs were significantly decreased for NS.SCRs (p<0.001) and for NS.SPRs (p<0.005), but NS.SSRs remained stable. Moreover, the rise time of NS.SCRs was decreased in the second resting time. Furthermore, the frequency of responses was also changed. The computed NS.EDRs, in particular NS.SCRs and NS.SPRs could be of psychological interest and be used to study the electrodermal responses in detail. NS.SSRs were found to be robust with respect to nonspecific stimuli at various relaxation periods and their role was found to be less important in analysis of NS.EDRs in comparison to NS.SCRs and NS.SPRs at low frequency (20 Hz AC current). This should be considered in analysis of NS.EDRs. The computed NS.EDRs, especially NS.SCRs and NS.SPRs may be used as a useful measure of arousal due to their fast response and sensitivity to nonspecific stimuli and may also be used in assessment of individual differences.

Open access
Electrodermal activity responses for quantitative assessment of felt pain

Abstract

Accurate assessment of experienced pain is a well-known problem in the clinical practices. Therefore, a proper method for pain detection is highly desirable. Electrodermal activity (EDA) is known as a measure of the sympathetic nervous system activity, which changes during various mental stresses. As pain causes mental stress, EDA measures may reflect the felt pain. This study aims to evaluate changes in skin conductance responses (SCRs), skin potential responses (SPRs), and skin susceptance responses (SSRs) simultaneously as a result of sequences of electrical (painful) stimuli with different intensities. EDA responses as results of painful stimuli were recorded from 40 healthy volunteers. The stimuli with three different intensities were produced by using an electrical stimulator. EDA responses significantly changed (increased) with respect to the intensity of the stimuli. Both SCRs and SSRs showed linear relationship with the painful stimuli. It was found that the EDA responses, particularly SCRs (p < 0.001) and SSRs (p = 0.001) were linearly affected by the intensity of the painful stimuli. EDA responses, in particular SCRs, may be used as a useful indicator for assessment of experienced pain in clinical settings.

Open access
A circuit for simultaneous measurements of skin electrical conductance, susceptance, and potential

Abstract

A circuit is presented that enables measurement of skin electrical conductance, susceptance, and potential simultaneously beneath the same monopolar electrode. Example measurements are shown to confirm the function of the circuit. The measurements are also in accordance with earlier findings that changes in skin conductance and potential do not always correspond and hence contain unique information.

Open access