Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Dariusz Bismor x
Clear All Modify Search
Open access

Dariusz Bismor

Abstract

In the areas of acoustic research or applications that deal with not-precisely-known or variable conditions, a method of adaptation to the uncertainness or changes is usually necessary. When searching for an adaptation algorithm, it is hard to overlook the least mean squares (LMS) algorithm. Its simplicity, speed of computation, and robustness has won it a wide area of applications: from telecommunication, through acoustics and vibration, to seismology. The algorithm, however, still lacks a full theoretical analysis. This is probabely the cause of its main drawback: the need of a careful choice of the step size - which is the reason why so many variable step size flavors of the LMS algorithm has been developed.

This paper contributes to both the above mentioned characteristics of the LMS algorithm. First, it shows a derivation of a new necessary condition for the LMS algorithm convergence. The condition, although weak, proved useful in developing a new variable step size LMS algorithm which appeared to be quite different from the algorithms known from the literature. Moreover, the algorithm proved to be effective in both simulations and laboratory experiments, covering two possible applications: adaptive line enhancement and active noise control.

Open access

Dariusz Bismor and Marek Pawelczyk

Abstract

The Least Mean Square (LMS) algorithm and its variants are currently the most frequently used adaptation algorithms; therefore, it is desirable to understand them thoroughly from both theoretical and practical points of view. One of the main aspects studied in the literature is the influence of the step size on stability or convergence of LMS-based algorithms. Different publications provide different stability upper bounds, but a lower bound is always set to zero. However, they are mostly based on statistical analysis. In this paper we show, by means of control theoretic analysis confirmed by simulations, that for the leaky LMS algorithm, a small negative step size is allowed. Moreover, the control theoretic approach alows to minimize the number of assumptions necessary to prove the new condition. Thus, although a positive step size is fully justified for practical applications since it reduces the mean-square error, knowledge about an allowed small negative step size is important from a cognitive point of view.