Search Results

You are looking at 1 - 3 of 3 items for

  • Author: D. Gawel x
Clear All Modify Search
Open access

D. Gawel, M. Nowak, H. Hausa and R. Roszak

Abstract

This paper presents a new biomimetic approach to the structural design. For the purpose of aircraft wing design the numerical environment combining simultaneous structural size, shape, and topology optimization based on aeroelastic analysis was developed. For the design of aircraft elements the optimization process must be treated as a multi-load case task, because during the fluid structure interaction analysis each step represents a different structural load case. Also, considering different angles of attack, during the CFD computation each result is considered. The method-specific features (such as domain independence, functional configurations during the process of optimization, and multiple load case solution implemented in the optimization scenario) enable the optimal structural form. To illustrate the algorithm functionality, the problem of determining the optimal internal wing structure was presented. The optimal internal wing structure resulting from aeroelastic computation with different angles of attack has been presented.

Open access

L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, T.G. Gaweł and A. Achtelik-Franczak

Abstract

The aim of the investigations described in this article is to present a selective laser sintering and melting technology to fabricate metallic scaffolds made of pristine titanium and titanium Ti6Al4V alloy powders. Titanium scaffolds with different properties and structure were manufactured with this technique using appropriate conditions, notably laser power and laser beam size. The purpose of such elements is to replace the missing pieces of bones, mainly cranial and facial bones in the implantation treatment process. All the samples for the investigations were designed in CAD/CAM (3D MARCARM ENGINEERING AutoFab (Software for Manufacturing Applications) software suitably integrated with an SLS/SLM system. Cube-shaped test samples dimensioned 10×10×10 mm were designed for the investigations using a hexagon-shaped base cell. The so designed 3D models were transferred to the machine software and the actual rapid manufacturing process was commenced. The samples produced according to the laser sintering technology were subjected to chemical processing consisting of etching the scaffolds’ surface in different chemical mediums. Etching was carried out to remove the loosely bound powder from the surface of scaffolds, which might detach from their surface during implantation treatment and travel elsewhere in an organism. The scaffolds created were subjected to micro- and spectroscopic examinations

Open access

L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweł, L.B. Dobrzański and A. Achtelik-Franczak

Abstract

The aim of the research, the results of which are presented in the paper, is to fabricate, by Selective Laser Melting (SLM), a metallic scaffold with Ti6Al4V powder based on a virtual model corresponding to the actual loss of a patient’s craniofacial bone. A plaster cast was made for a patient with a palate recess, and the cast was then scanned with a 3D scanner to create a virtual 3D model of a palate recess, according to which a 3D model of a solid implant was created using specialist software. The virtual 3D solid implant model was converted into a 3D porous implant model after designing an individual shape of the unit cell conditioning the size and three-dimensional shape of the scaffold pores by multiplication of unit cells. The data concerning a virtual 3D porous implant model was transferred into a selective laser melting (SLM) device and a metallic scaffold was produced from Ti6Al4V powder with this machine, which was subjected to surface treatment by chemical etching. An object with certain initially adopted assumptions, i.e. shape and geometric dimensions, was finally achieved, which perfectly matches the patient bone recesses. The scaffold created was subjected to micro-and spectroscopic examinations.