Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Czesław Machelski x
Clear All Modify Search
Open access

Czesław Machelski

Abstract

The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness) become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffness is the inverse of the deflection influence function used in structural mechanics. The moving load methodology is shown to be useful for testing, since it makes it possible to map the shell deflection influence line also in the case of group loads (concentrated forces), as in bridges. The analyzed cases show that the shell’s span, geometry (static scheme) and the height of earth fill influence the stiffness of the structure. The soil-steel structure’s characteristic parameter in the form of stiffness k is more suitable for assessing the quality of construction works than the proposed in code geometric index ω applied to beam structures. As shown in the given examples, parameter k is more effective than stiffness parameter λ used to estimate the deformation of soil-steel structures under construction. Although the examples concern railway structures, the methodology proposed in the paper is suitable also for road bridges.

Open access

Czesław Machelski

Abstract

A characteristic feature of soil-steel structures is that, unlike in typical bridges, the backfill and the carriageway pavement with its foundation play a major role in bearing loads. In the soil-steel structure model, one can distinguish two structural subsystems: the shell made of corrugated plates and the backfill with the pavement layers. The interactions between the subsystems are modelled as interfacial interactions, that is, forces normal and tangent to the surface of the shell. This is a static condition of the consistency of mutual interactions between the surrounding earth and the shell, considering that slip can arise at the interface between the subsystems. This paper presents an algorithm for determining the internal forces in the shell on the basis of the unit strains in the corrugated plates, and subsequently, the interfacial interactions. The effects of loads arising during the construction of a soil-steel bridge when, for example, construction machines drive over the structure, are taken into account in the analysis of the internal forces in the shell and in the surrounding earth. During construction, the forces in the shell are usually many times greater than the ones generated by service loads. Thus, the analytical results presented in this paper provide the basis for predicting the behaviour of the soil medium under operational loads.

Open access

Czesław Machelski

Abstract

This paper analyses the effects of loads that change their location, i.e. moving but quasi-static loads. Displacements defining the deformation of the soil–steel structure’s shell buried in soil are calculated from the results of measurements performed using a dense grid of points located on the circumferential section of the corrugated plate. In this way, all the components of the structure, namely the corrugated plate, the backfill and the pavement with its foundation, as well as the natural (real) principles of their interaction, are taken into account in the solution. In the proposed algorithm, unit strains are converted into displacements, whereby results as accurate as the ones obtained by direct experimental measurements are obtained. The algorithm’s main advantages are that the number of points is limitless, they are regularly distributed on the circumferential section of the shell and any displacement directions can be obtained. Consequently, the deformations of the shell can be faithfully reproduced. The algorithm’s convenient feature is that one can use a simplified computational diagram of the shell in the form of a beam having the shape of the shell in 2D space (without the other components of the soil–steel structure). The advantage of this measuring method (electric resistance tensometry) is that there is no need to build the solid scaffold used for displacement measurements. The research focuses on the analysis of the displacements and the unit strains arising during the primary and secondary (return) travel of the load.

Open access

Czesław Machelski and Marcin Mumot

Abstract

Corrugated steel plates are highly rigid and as the constructions can be immersed in soil, they can be used as soil-steel structures. With an increase of cover depth, the effectiveness of operating loads decreases. A substantial reduction of the impacts of vehicles takes place as a road or rail surface with its substructure is crucial. The scope of load’s impact greatly exceeds the span L of a shell. This article presents the analysis of deformations of the upper part of a shell caused by a live load. One of the assumptions used in calculations performed in Plaxis software was the circle-shaped shell and the circumferential segment of the building structure in the 2D model. The influence lines of the components of vertical and horizontal displacements of points located at the highest place on the shell were used as a basis of analysis. These results are helpful in assessing the results of measurements carried out for the railway structure during the passage of two locomotives along the track. This type of load is characterized by a steady pressure onto wheels with a regular wheel base. The results of measurements confirmed the regularity of displacement changes during the passage of this load.