Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Cristina Onete x
Clear All Modify Search
Open access

Pierre-Alain Fouque, Cristina Onete and Benjamin Richard

Abstract

Proposed by the 3rd Generation Partnership Project (3GPP) as a standard for 3G and 4G mobile-network communications, the AKA protocol is meant to provide a mutually-authenticated key-exchange between clients and associated network servers. As a result AKA must guarantee the indistinguishability from random of the session keys (key-indistinguishability), as well as client- and server-impersonation resistance. A paramount requirement is also that of client privacy, which 3GPP defines in terms of: user identity confidentiality, service untraceability, and location untraceability. Moreover, since servers are sometimes untrusted (in the case of roaming), the AKA protocol must also protect clients with respect to these third parties. Following the description of client-tracking attacks e.g. by using error messages or IMSI catchers, van den Broek et al. and respectively Arapinis et al. each proposed a new variant of AKA, addressing such problems. In this paper we use the approach of provable security to show that these variants still fail to guarantee the privacy of mobile clients. We propose an improvement of AKA, which retains most of its structure and respects practical necessities such as key-management, but which provably attains security with respect to servers and Man-in-the- Middle (MiM) adversaries. Moreover, it is impossible to link client sessions in the absence of client-corruptions. Finally, we prove that any variant of AKA retaining its mutual authentication specificities cannot achieve client-unlinkability in the presence of corruptions. In this sense, our proposed variant is optimal.

Open access

Ghada Arfaoui, Xavier Bultel, Pierre-Alain Fouque, Adina Nedelcu and Cristina Onete

Abstract

TLS (Transport Layer Security) is a widely deployed protocol that plays a vital role in securing Internet traffic. Given the numerous known attacks for TLS 1.2, it was imperative to change and even redesign the protocol in order to address them. In August 2018, a new version of the protocol, TLS 1.3, was standardized by the IETF (Internet Engineering Task Force). TLS 1.3 not only benefits from stronger security guarantees, but aims to protect the identities of the server and client by encrypting messages as soon as possible during the authentication. In this paper, we model the privacy guarantees of TLS 1.3 when parties execute a full handshake or use a session resumption, covering all the handshake modes of TLS. We build our privacy models on top of the one defined by Hermans et al. for RFIDs (Radio Frequency Identification Devices) that mostly targets authentication protocols. The enhanced models share similarities to the Bellare-Rogaway AKE (Authenticated Key Exchange) security model and consider adversaries that can compromise both types of participants in the protocol. In particular, modeling session resumption is non-trivial, given that session resumption tickets are essentially a state transmitted from one session to another and such link reveals information on the parties. On the positive side, we prove that TLS 1.3 protects the privacy of its users at least against passive adversaries, contrary to TLS 1.2, and against more powerful ones.