Search Results

1 - 2 of 2 items

  • Author: Chin-Teng Lin x
Clear All Modify Search


A novel data knowledge representation with the combination of structure learning ability of preprocessed collaborative fuzzy clustering and fuzzy expert knowledge of Takagi- Sugeno-Kang type model is presented in this paper. The proposed method divides a huge dataset into two or more subsets of dataset. The subsets of dataset interact with each other through a collaborative mechanism in order to find some similar properties within each-other. The proposed method is useful in dealing with big data issues since it divides a huge dataset into subsets of dataset and finds common features among the subsets. The salient feature of the proposed method is that it uses a small subset of dataset and some common features instead of using the entire dataset and all the features. Before interactions among subsets of the dataset, the proposed method applies a mapping technique for granules of data and centroid of clusters. The proposed method uses information of only half or less/more than the half of the data patterns for the training process, and it provides an accurate and robust model, whereas the other existing methods use the entire information of the data patterns. Simulation results show the proposed method performs better than existing methods on some benchmark problems.


Electroencephalograph (EEG) data provide insight into the interconnections and relationships between various cognitive states and their corresponding brain dynamics, by demonstrating dynamic connections between brain regions at different frequency bands. While sensory input tends to stimulate neural activity in different frequency bands, peaceful states of being and self-induced meditation tend to produce activity in the mid-range (Alpha). These studies were conducted with the aim of: (a) testing different equipment in order to assess two (2) different EEG technologies together with their benefits and limitations and (b) having an initial impression of different brain states associated with different experimental modalities and tasks, by analyzing the spatial and temporal power spectrum and applying our movie making methodology to engage in qualitative exploration via the art of encephalography. This study complements our previous study of measuring multichannel EEG brain dynamics using MINDO48 equipment associated with three experimental modalities measured both in the laboratory and the natural environment. Together with Hilbert analysis, we conjecture, the results will provide us with the tools to engage in more complex brain dynamics and mental states, such as Meditation, Mathematical Audio Lectures, Music Induced Meditation, and Mental Arithmetic Exercises. This paper focuses on open eye and closed eye conditions, as well as meditation states in laboratory conditions. We assess similarities and differences between experimental modalities and their associated brain states as well as differences between the different tools for analysis and equipment.