Search Results

1 - 2 of 2 items

  • Author: Carmelo J. Felice x
Clear All Modify Search
Isoconductivity method to study adhesion of yeast cells to gold electrode

Abstract

In this paper, we used impedance spectroscopy and gold electrodes to detect the presence of yeast cells and monitor the attachment of these cells to the electrodes. We analyzed the effect of conductivity changes of the medium and the attachment on the electrode-electrolyte interface impedance. A three-electrode cell was designed to produce a uniform electric field distribution on the working electrode and to minimize the counter electrode impedance. Moreover, we used a small AC overpotential (10 mV) to keep the system within the linear impedance limits of the electrode-electrolyte interface. This study proposes a new method to differentiate the impedance changes due to the attachment of yeast cells from those due to conductivity changes of the medium. The experiments showed that when the difference between the cell suspension and base solution conductivities is within the experimental error, the impedance changes are only due to the attachment of yeast cells to the electrodes. The experiments also showed a strong dependence (decrease) of the parallel capacity of the electrode electrolyte interface with the yeast cell concentration of suspension. We suggest that this decrease is due to an asymmetrical redistribution of surface charges on both sides of cell, which can be modeled as a biologic capacity connected in series with the double layer capacity of the interface. Our results could help to explain the rate of biofilm formation through the determination of the rate of cell adhesion.

Open access
Evaluation of sugar yeast consumption by measuring electrical medium resistance

Abstract

The real-time monitoring of alcoholic fermentation (sugar consumption) is very important in industrial processes. Several techniques (i.e., using a biosensor) have been proposed to realize this goal. In this work, we propose a new method to follow sugar yeast consumption. This novel method is based on the changes in the medium resistance (Rm) that are induced by the CO2 bubbles produced during a fermentative process. We applied a 50-mV and 700-Hz signal to 75 ml of a yeast suspension in a tripolar cell. A gold electrode was used as the working electrode, whereas an Ag/AgCl electrode and a stainless-steel electrode served as the reference and counter electrodes, respectively. We then added glucose to the yeast suspension and obtained a 700% increase in the Rm after 8 minutes. The addition of sucrose instead of glucose as the carbon source resulted in a 1200% increase in the Rm. To confirm that these changes are the result of CO2 bubbles in the fermentation medium, we designed a tetrapolar cell in which CO2 gas was insufflated at the bottom of the cell and concluded that the changes were due to CO2 bubbles produced during the fermentation. Consequently, this new method is a low-cost and rapid technology to follow the sugar consumption in yeast.

Open access