Search Results

1 - 2 of 2 items

  • Author: C. Wehenkel x
Clear All Modify Search


In natural plant populations, the spatial genetic structure (SGS) is occasionally associated with evolutionary and ecological features such as the mating system, individual fitness, inbreeding depression and natural selection of the species of interest. The very rare Mexican P. chihuahuana tree community covers an area no more than 300 ha and has been the subject of several studies concerning its ecology and population genetics. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. However, analysis of the fine-scale SGS in this special forest tree community has not yet been conducted, which might help enrich the above mentioned conservation programs. In this study, we examined the SGS of this community, mostly formed by P. chihuahuana Martínez, Pinus strobiformis Ehrenberg ex Schlechtendah, Pseudotsuga menziesii (Mirb.) Franco, and Populus tremuloides Michx, in 14 localities at both the fine and large scales, with the aim of obtaining a better understanding of evolutionary processes. We observed a non-significant autocorrelation in fine-scale SGS, suggesting that the genetic variants of all four tree species are randomly distributed in space within each sampled plot of 50 x 50 m. At the larger scale, the autocorrelation was highly significant for P. chihuahuana and P. menziesii, probably as a result of insufficient gene flow due to the extreme population isolation and small sizes. For these two species our results provided strong support for the theory of isolation by distance.


Different species of the genus Eucalyptus, originally native to Australia, are being cultivated in different parts of the world due to their fast growth and beneficial wood properties. In Mexico, probably up to 25 different Eucalyptus species (many of them with unknown species declaration) were introduced early in the 20th century. Many Eucalyptus species are cross compatible and information about provenances of the single eucalypt species is rare. In this study, an experimental plantation established in 1984 and located in Northeast of Mexico was chosen as example to re-assign the species name of six randomly selected Eucalyptus trees growing in this plantation. First, a phylogenetic tree was constructed from complete chloroplast sequences of 31 Eucalyptus species available in the NCBI database. The phylogenetic tree includes three of the nine Eucalyptus species known to be introduced to Mexico, namely E. camaldulensis, E. saligna and E. grandis, which belong to a clade named “Symphyomyrts”. By employing combined BLASTN and UPGMA analyses of six chloroplast (cp) regions, three of the six unknown eucalypt samples (Euc4, 5, 6) cluster together with E. microtheca and E. cladocalyx, whereas the other three (Euc1, 2, 3) were more similar to a group containing E. camaldulensis, E. grandis and E. saligna. UPGMA analysis of the ITS region overall shows the same rough clustering, but provide more detailed information for two samples being most likely assigned to E. camaldulensis.