Search Results

1 - 3 of 3 items

  • Author: Bogusław Buszewski x
Clear All Modify Search

Abstract

One of the most essential parameters limiting the potential use of the ecosystem (soil, water) is the content of the organic matter. The natural organic matter (NOM) is a ubiquitous component of the lithosphere and hydrosphere that constitutes one of the largest reservoirs of the carbon in the environment. Natural organic substances play several important functions in ecosystems and they are necessary for their normal functioning. Despite many years of the research and using many advanced analytical techniques, their structure has not been fully explained. The main aim of this review is to present the actual state of the knowledge about the natural organic matter and provide a comprehensive overview of the research that has explored up to date in this matter. The additional attention was focused on the relations within and between humic and fulvic acids in terrestrial and aquatic environments. Special attention is focused on the analytical methods used to analysis natural organic matter

Abstract

Drug metabolism in liver microsomes was studied in vitro using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Relevant drug was incubated with dog, human and rat liver microsomes (DLMs, HLMs, RLMs) along with NADPH, and the reaction mixture was analyzed by LC-MS/MS to obtain specific metabolic profile. GRACE analytical C18 column, Vision HT (50 × 2 mm, 1.5 μm) was implemented with acetonitrile and water (+ 5 mM ammonium acetate) in a gradient mode as the mobile phase at a flow 0.4 mL.min−1. Different phase I and phase II metabolites were detected and structurally described. The metabolism of the studied drugs occurred via oxidation, hydroxylation and oxidative deamination processes. Conjugates with the glucuronic acid and sulfate were also observed as phase II biotransformation. The central composite design (CCD) showed that factors, such as time incubation, liver microsomal enzymes concentration and NADPH concentration, along with drying gas temperature, nebulizer gas pressure and capillary voltage significantly affected the final response of the method. This study describes the novel information about the chemical structure of the potential metabolites of selected biologically active compounds, which provide vital data for further pharmacokinetic and in vivo metabolism studies.

Abstract

Gas chromatography and mass spectrometry (GC/MS) was applied for determination of concentrations volatile organic compounds present in human breath samples. The technique allows to rapid determination compounds in human air, at the level of parts per billion. It showed linear correlations ranging from 0.83-234.05 ppb, limit detection in the range of 0.31-0.75 ppb and precision, expressed as RSD, was less then 10.00%. Moreover, trained dogs are able to discriminate breath samples of patients with diagnosed cancer disease. We found positive correlation between dog indications and content of ethyl acetate and 2- pentanone in breath (r=0.85 and r=0.97, respectively)