Search Results

1 - 3 of 3 items

  • Author: Bożena Gołębiowska x
Clear All Modify Search

Olivenite-Adamite Solid Solution From Oxidation Zone in Rędziny (West Sudetes, Poland)

An extensive hydrothermal polymetallic mineralization with a well developed oxidation zone rich in secondary minerals occurs in dolostones several hundred meters from the Karkonosze granite at Rędziny. Using XRD and FTIR methods, mineral phases representing transitional members of the olivenite-adamite solid solution have been identified. Electron microprobe analyses reveal the most common varieties to be zincian olivenite and cuprous adamite with compositions ranging from (Cu1.17Zn0.83)(AsO4)(OH) to (Zn1.38Cu0.62)(AsO4)(OH). The two minerals are subordinate in the weathering zone which can be characterized as having been a zone of low Cu2+ and Zn2+ activity and with mineralizing solutions of increased pH. A high Ca2+ concentration due to the ubiquitous presence of carbonate rocks resulted in the expansion of the stability field of another arsenate, conichalcite (or Zn-bearing conichalcite), which is a common mineral there.


In the Permian rhyodacite quarry at Zalas near Krakow, southern Poland, thallium-bearing Mn oxides occur in a small fault zone cutting Middle Jurassic sandy limestone poorly encrusted by an oxidized polymetallic mineralization. The encrustation comprises sulphides (pyrite, chalcopyrite, chalcocite, covellite, galena, marcasite), native bismuth, hematite, goethite, cuprite, mottramite, iodargyrite, unrecognized Cu sulphates and Bi oxychlorides as supergene minerals, barite and rare tiny grains of gold. It is most likely connected with rejuvenation of Early-Paleozoic faults during the Alpine orogeny on the Oligocene–Miocene boundary. Rare Tlbearing Mn oxides occur in an outside zone of the encrustations, filling small fractures and voids in limestone forming the fault breccia. Tl contents, reaching 20.82wt% as Tl2O, exceed by more than two orders of magnitude those reported in similar minerals before, making the oxides unique on a world scale. The Tl-bearing Mn oxides from Zalas reflect intensive weathering of an older Tl-bearing sulphide mineralization in an arid climate, involving saline fluids delivered to the groundwater system as the nappe structure of the Carpathians was developing during the Sava tectonic phase Oligocene/Miocene boundary.


Tourmaline occurring in hornfelses from the eastern envelope of the Karkonosze Granite (Western Sudetes, Poland) reveals at least two stages of crystallization expressed by its complex zoning. The cores and mantles of the crystals probably grew during prograde metamorphism under intermediate pressure-temperature conditions reflected by increasing Mg, Ti and Ca. Outermost rims show enrichment in Al and Ca, indicating growth during contact metamorphism in the presence of an Al-saturating phase. The Ti-content in biotite indicates that the temperature of the contact metamorphic event did not exceed 650ºC. The presence of andalusite and the lack of garnet and cordierite also indicates pressure conditions of ~ 2-3 kbar, typical of the C1 bathozone of Carmichael (1978) or the P1 bathozone of Pattison (2001).