Search Results

You are looking at 1 - 10 of 19 items for

  • Author: Bin Liu x
Clear All Modify Search
Open access

Bin Liu and Zhongbin Li

Abstract

Purpose – This study aimed to assess the impact of director-generals’ human and social capitals on the organizational performance of farmers’ cooperatives in Fujian Province. Design/Methodology/Approach – Questionnaire survey data of 303 standard cooperatives in nine cities of Fujian Province were statistically analyzed.

Findings – We identified that director-generals’ human and social capitals affect all four dimensions of cooperative performance, through the mediating role of management effectiveness.

Practical Implications – We offer suggestions and measures for improving cooperatives’ performance by enhancing the human and social capitals of director-generals. Based on China’s national conditions, we propose measures to improve director-generals’ human and social capitals by the Internal trust, Government policy support, and Business network (IGB) model, which emphasizes establishing a social network of cooperatives’ director-generals, accumulating social capital, and promoting cooperative development through internal members, government departments, and commercial organizations.

Open access

Bin Xu and Yan Liu

Abstract

The primary evaluation of the economic losses caused by water pollution in Shanghai in the year 2009 is made by classification approach in order to provide basis for decision of the relative water management policy. The result shows that the portion of water pollution losses in GDP of Shanghai was 2.7%, which was still lower than the average level of whole China despite of the local high population density and the scale of industry, suggesting to some extent the continuous attention in water protection paid by Shanghai government.

Open access

Wei Song, Huai-yuan Liu, Bin Xiang, Hong Hu, Cheng-jiang Wang and Ling-yun Wan

Open access

Wen Jianhui, Du Wen, Peng Bin, Zhang Xiaobing, Xie Fuwei, Liu Huimin and Zhong Kejun

SUMMARY

The filtration and retention characteristics of nicotine, phenol, benzo[a]pyrene (B[a]P), 4-(methylnitrosamino)-1- (3-pyridyl)-1-butanone (NNK), crotonaldehyde, hydrogen cyanide (HCN) and ammonia in conventional cellulose acetate fiber filters were investigated. By quantitatively analyzing their contents released in mainstream smoke and retained in filters, their filtration efficiencies, taken as the ratio of filter retention content to total yield, were determined under both International Organization for Standardization (ISO) and Health Canadian Intense (HCI) smoking regimes. Using a precision laser cutter, the filters were either cut transversely into 5-7 segments for longitudinal distribution pattern study, or cut transversely into 3 segments firstly and then each segment was cut concentrically into 3 concentric segments for spatial distribution pattern study. Contents of the named smoke components retained in these filter segments were quantitatively analyzed. The data were calibrated and then processed with interpolation analysis and polynomial fitting. The longitudinal distribution patterns for all components mentioned above, as well as spatial distribution patterns for nicotine, phenol, HCN, ammonia and crotonaldehyde, were obtained. The filtration efficiencies of different smoke components varied between 24% and 15% for HCN, 87% and 92% for phenol under ISO and HCI smoking regimes respectively. The filtration efficiencies of all the studied components under HCI smoking were lower than under ISO smoking to different extents except phenol which showed the opposite trend. Different mainstream smoke components have their own retention behavior and distribution characteristics which are determined by the physical and chemical properties of the component and its interaction with cellulose acetate fiber and the glycerol triacetate within the filter. The diversity of retention distribution patterns of different components shows the high complexity of cigarette smoke filtration in filters. [Beitr. Tabakforsch Int. 26 (2014) 121-131]

Open access

Bin Tang, Xing Zhang, Zixuan Fang, Qinglin Liu and Shuren Zhang

Abstract

Zn0.7Co0.3(Ti1-xSnx)Nb2O8 (x = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35) microwave ceramics were prepared by traditional solidstate reaction method. The influences of Sn substituted for Ti on the phase constitution, crystal structure and microwave dielectric properties of Zn0.7Co0.3(Ti1-xSnx)Nb2O8 ceramics were discussed. The XRD patterns revealed the main phase of ZnTiNb2O8 and little content of Zn0.17Ti0.5Nb0.33O2 secondary phase. With further substitution of Sn, the lattice constant, volume and apparent density of the ceramics increased, the ceramic structure reached a maximal compactness at x = 0.2 which was shown on SEM. Tremendous improvement of Q × f and a declining trend of Ɛr and τf were obtained with increasing x value. Appropriate substitution value (x = 0.10) would ensure excellent microwave dielectric properties (Ɛr = 34.1, Q × f = 40562 GHz, τf =-5 ppm/°C) of the ceramics sintered at 1080 °C.

Open access

Liu Bin, Meng Zhang, Liu Lixia, Zang Aimin, Yang Hua, Shang Yanhong, Yang Yang, Gao Feng, Liu Bo, Zhang Yonggang and Tian Huiping

Abstract

Background: MiRNA-30c was a tumor suppressor in several human cancers, however, its association with clinicopathological features and prognosis in colorectal cancer (CRC) is unclear.

Materials and Methods: The expression level of miRNA-30c in 192 pairs of colorectal cancer and adjacent normal tissues was detected by Quantitative RT-PCR, the association between miRNA-30c expression and clinical characteristics and prognosis were statistically analyzed.

Results: miRNA-30c was significantly lower in CRC tissues specimens compared with matched normal adjacent tissue (P<0.001). MiRNA-30c was positively correlated with tumor size (P=0.012), TMN stage (P=0.002) and lymph node metastasis (P=0.004). The univariate analysis showed CRC patients with low miRNA-30c had distinctly shorter overall survival (P<0.001) than patients with high miRNA-30c expression level. The multivariate analysis was performed and informed that low miRNA-30c expression (P<0.001) might be an independent prognostic predictor for poor prognosis.

Conclusion: miRNA-30c could predict the prognosis of colorectal cancer which is helpful to choose reasonable treatment measures.

Open access

Xi-Lin Liu, Xiao-Li Feng, Guang-Ming Wang, Bin-Bin Gong, Waqas Ahmad, Nan-Nan Liu, Yuan-Yuan Zhang, Li Yang, Hong-Lin Ren and Shu-Sen Cui

Abstract

Introduction: The functions and mechanisms of prion proteins (PrPC) are currently unknown, but most experts believe that deformed or pathogenic prion proteins (PrPSc) originate from PrPC, and that there may be plural main sites for the conversion of normal PrPC into PrPSc. In order to better understand the mechanism of PrPC transformation to PrPSc, the most important step is to determine the replacement or substitution site.

Material and Methods: BALB/c mice were challenged with prion RML strain and from 90 days post-challenge (dpc) mice were sacrificed weekly until all of them had been at 160 dpc. The ultra-structure and pathological changes of the brain of experimental mice were observed and recorded by transmission electron microscopy.

Results: There were a large number of pathogen-like particles aggregated in the myelin sheath of the brain nerves, followed by delamination, hyperplasia, swelling, disintegration, phagocytic vacuolation, and other pathological lesions in the myelin sheath. The aggregated particles did not overflow from the myelin in unstained samples. The phenomenon of particle aggregation persisted all through the disease course, and was the earliest observed pathological change.

Conclusion: It was deduced that the myelin sheath and lipid rafts in brain nerves, including axons and dendrites, were the main sites for the conversion of PrPC to PrPSc, and the PrPSc should be formed directly by the conversion of protein conformation without the involvement of nucleic acids.

Open access

Bin Li, Lucan Zhao, Chuanfang Yu, Chuan Liu, Yi Jing, Hongrui Pang, Bing Wang and Kevin G. McAdam

Abstract

Accurate measurements of cigarette coal temperature are essential to understand the thermophysical and thermo-chemical processes in a burning cigarette. The last system-atic studies of cigarette burning temperature measurements were conducted in the mid-1970s. Contemporary cigarettes have evolved in design features and multiple standard machine-smoking regimes have also become available, hence there is a need to re-examine cigarette combustion. In this work, we performed systematic measurements on gas-phase temperature of burning cigarettes using an improved fine thermocouple technique. The effects of machine-smoking parameters (puff volume and puff duration) and filter ventilation levels were studied with high spatial and time resolutions during single puffs. The experimental results were presented in a number of differ-ent ways to highlight the dynamic and complex thermal processes inside a burning coal. A mathematical distribution equation was used to fit the experimental temperature data. Extracting and plotting the distribution parameters against puffing time revealed complex temperature profiles under different coal volume as a function of puffing intensities or filter ventilation levels. By dividing the coal volume prior to puffing into three temperature ranges (low-temperature from 200 to 400 °C, medium-temperature from 400 to 600 °C, and high-temperature volume above 600 °C) by following their development at different smoking regimes, useful mechanistic details were obtained. Finally, direct visualisation of the gas-phase temperature through detailed temperature and temperature gradient contour maps provided further insights into the complex thermo-physics of the burning coal. [Beitr. Tabakforsch. Int. 26 (2014) 191-203]