Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Biljana Balen x
Clear All Modify Search
Open access

Petra Peharec Štefanić, Sandra Šikić, Petra Cvjetko and Biljana Balen

The effects of 10 μmol L-1 and 15 μmol L-1 cadmium (Cd), a nonessential toxic element and 25 μmol L-1 and 50 μmol L-1 zinc (Zn), an essential micronutrient, on proteins and glycoproteins of Nicotiana tabacum L. seedlings and plants were investigated after exposure to each metal alone or to their combinations. Changes in only few polypeptides related to heavy metal treatments were observed in tobacco seedlings and leaves of adult plants, while the greatest change in total soluble protein pattern was observed in plant roots. Differences between control and treated tobacco tissues were more pronounced in the glycoprotein pattern, which was analysed by application of different lectins. The majority of the detected glycoproteins in leaves and roots of adult plants can be considered as a result of enhanced glycosylation due to heavy metal stress. The difference in glycoproteins between Cd and Zn application on tobacco seedlings and adult plants could not be determined since enhanced glycosylation was noticed after treatment with either metal alone or in combination. Therefore, it can be concluded that both metals induced N- and Oglycosylation as a result of changed environmental conditions.

Open access

Petra Cvjetko, Sonja Tolić, Sandra Šikić, Biljana Balen, Mirta Tkalec, Željka Vidaković-Cifrek and Mirjana Pavlica

Effect of Copper on the Toxicity and Genotoxicity of Cadmium in Duckweed (Lemna Minor L.)

We investigated interactions between copper (in the concentrations of 2.5 μmol L-1 and 5 μmol L-1) and cadmium (5 μmol L-1) in common duckweed (Lemna minor L.) by exposing it to either metal or to their combinations for four or seven days. Their uptake increased with time, but it was lower in plants treated with combinations of metals than in plants treated with either metal given alone. In separate treatments, either metal increased malondialdehyde (MDA) level and catalase and peroxidase activity. Both induced DNA damage, but copper did it only after 7 days of treatment. On day 4, the combination of cadmium and 5 μmol L-1 copper additionally increased MDA as well as catalase and peroxidase activity. In contrast, on day 7, MDA dropped in plants treated with combinations of metals, and especially with 2.5 μmol L-1 copper plus cadmium. In these plants, catalase activity was higher than in copper treated plants. Peroxidase activity increased after treatment with cadmium and 2.5 μmol L-1 copper but decreased in plants treated with cadmium and 5 μmol L-1 copper. Compared to copper alone, combinations of metals enhanced DNA damage after 4 days of treatment but it dropped on day 7. In conclusion, either metal given alone was toxic/genotoxic and caused oxidative stress. On day 4 of combined treatment, the higher copper concentration was more toxic than either metal alone. In contrast, on day 7 of combined treatment, the lower copper concentration showed lower oxidative and DNA damage. These complex interactions can not be explained by simple antagonism and/or synergism. Further studies should go in that direction.

Open access

Petra Cvjetko, Mira Zovko and Biljana Balen

Summary

Plants endure a variety of abiotic and biotic stresses, all of which cause major limitations to production. Among abiotic stressors, heavy metal contamination represents a global environmental problem endangering humans, animals, and plants. Exposure to heavy metals has been documented to induce changes in the expression of plant proteins. Proteins are macromolecules directly responsible for most biological processes in a living cell, while protein function is directly influenced by posttranslational modifications, which cannot be identified through genome studies. Therefore, it is necessary to conduct proteomic studies, which enable the elucidation of the presence and role of proteins under specific environmental conditions. This review attempts to present current knowledge on proteomic techniques developed with an aim to detect the response of plant to heavy metal stress. Significant contributions to a better understanding of the complex mechanisms of plant acclimation to metal stress are also discussed.