Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Bilal Hassan x
Clear All Modify Search
Open access

Bilal Hassan, Stephen D. Butt and Charles A. Hurich

Abstract

Evaluation results of shear wave attenuation-based ground motion restricted by fracture orientation and rheology, from among those of an extended experimental study, are presented herein. The issues of competence of fractured bedrock dynamically disturbed multilaterally are assessed. Disturbance is primarily modelled by Sh and Sv stimulation, given fracture orientation, while subjected to direct fracture stress regime conditions varying in time. Hence, directionalities of polarisation and stress are taken into consideration simultaneously following simple site-specific non-erodetic approach. Comparison of spectral curves and spectral ratio curves of attenuation with respect to variations of direction and stress emphasise the amplification of the ‘seismic response’ in one direction compared to the other, i.e. vertical vs. horizontal, in terms of weighing possibilities of or predicting structural integrity against failure. The composite analyses of multiple spectral curves not only enable determination of the orientation of the fracture set/s in space but also allow inferring the nature of more amplified response perpendicular to the crack surface compared to that of a response parallel to the crack surface.

Open access

Bilal Hassan, Stephen Butt and Charles Hurich

Abstract

Among numerous causes of fluid releases and infiltration in near surface, resurgence in such anthropic activities associated with unconventional resource developments have brought about a resounding concern. Apart from the risk of an immediate chemical hazard, a long term possible recurrent geo-environmental risk since can also be envisaged as for various prevalent stake holders and broader initiatives. Urgency and exactness for spatiotemporal containment and remediation promotes the devising of efficient methods for monitoring near subsurface flow complexes caused by such spills. Swave (Shear waves) spectral imaging results, in relevant context, of a controlled immiscible fluid displacement monitoring experimental study are analysed and inferred. Against the prospective method as well evaluated, Swave diffraction associated spectral peculiarities are examined, importantly, given background medium characteristics definitions invoking fresh insights of microscale significance alongside macroscale potential.