Search Results

1 - 2 of 2 items

  • Author: Bethalihem T. Samuel x
Clear All Modify Search

Abstract

Natural fiber-reinforced composites are getting more attention from researchers and manufacturing companies to replace metals and synthetic materials that have dominated the manufacturing industries. In this study, the mechanical properties of unidirectional (UD) flax roving-reinforced composites and woven fabric-reinforced composites were investigated. Three different composites were prepared from flax rovings, which have the same linear density and epoxy resin matrix, with different reinforcement and composite preparation methods. The samples were subjected to experimental tests of flexural rigidity and tensile strength in a parallel and perpendicular direction to fiber orientation. The test results showed that flexural rigidity and tensile strength of flax fiber-reinforced composites are highly dependent on the direction of fiber orientation. The results also reveal that in a parallel direction to fiber orientation, UD composites have higher flexural rigidity and tensile strength than woven fabric-reinforced composite.

Abstract

A baby stroller allows the transportation of a child over long or short distances. The materials used to produce the stroller make it heavy for users, which creates difficulties when lifting the stroller. The goal of this project was to design and fabricate a three-dimensional (3D) fabric structure that can be used as part of a stroller seat to improve its mechanical and physical properties. The idea of implementing a woven 3D system allows the development of an egg-shaped or shell-like structure as part of a stroller seat. The combination of double-woven material and honeycomb polypropylene (as the reinforcing material) was used to create a 3D composite structure. Single and double layers of polypropylene honeycomb sandwiched within layers of linen flax fabric were used to prepare the composite samples. Subsequently, tests on mechanical and physical properties, such as density, flexural strength, and tensile strength, were carried out. Analysis of the results showed that the composite with one layer of honeycomb has half the density of polyvinyl chloride.