Search Results

You are looking at 1 - 8 of 8 items for

  • Author: Benedetto Falsini x
Clear All Modify Search
Open access

Andi Abeshi, Alice Bruson, Tommaso Beccari, Munis Dundar, Benedetto Falsini and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of the genetic test for optic atrophy (OA). OA is mostly inherited in an autosomal dominant manner, rarely in an autosomal recessive manner, with an overall prevalence of 3/100,000 live births. It is caused by mutations in the OPA1, OPA3 and TMEM126A genes. Clinical diagnosis is based on clinical findings, ophthalmological examination, OCT, visual evoked potentials (VEPs) and electroretinography. The genetic test is useful for confirming diagnosis, differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Vincenza Precone, Tommaso Beccari, Munis Dundar, Benedetto Falsini and Matteo Bertelli

Abstract

Inherited eye diseases are a group of conditions with genetic and phenotypic heterogeneity. Advances in ocular genetic research have provided insights into the genetic basis of many eye diseases. Genetic and technological progress is improving the management and care of patients with inherited eye diseases. Diagnostic laboratories continue to develop strategies with high specificity and sensitivity that reduce the costs and time required for genetic testing. The introduction of next generation sequencing technologies has significantly advanced the identification of new gene candidates and has expanded the scope of genetic testing. Gene therapy offers an important opportunity to target causative genetic mutations. There are clinical trials of treatments involving vector-based eye gene therapies, and a significant number of loci and genes now have a role in the diagnosis and treatment of human eye diseases. Applied genetic technology heralds the development of individualized treatments, ushering ophthalmology into the field of personalized medicine. Many therapeutic strategies have demonstrated efficacy in preclinical studies and have entered the clinical trial phase. In this paper we review the topic of genetic testing in inherited eye diseases. We provide some background information about genetic counseling and genetic testing in ophthalmology and discuss how genetic testing can be helpful to patients and families with inherited eye diseases.

Open access

Andi Abeshi, Alessandra Zulian, Tommaso Beccari, Munis Dundar, Benedetto Falsini and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for achromatopsia. The disease has autosomal recessive inheritance, a prevalence of 1/30000-1/50000, and is caused by mutations in the CNGB3, CNGA3, GNAT2, PDE6C, ATF6 and PDE6H genes. Clinical diagnosis is by ophthalmological examination, color vision testing and electrophysiological testing. Genetic testing is useful for confirming diagnosis and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Pamela Coppola, Tommaso Beccari, Munis Dundar, Benedetto Falsini and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Leber congenital amaurosis (LCA). LCA is mostly inherited in an autosomal recessive manner, rarely in an autosomal dominant manner, with an overall prevalence of 2-3/100,000 live births, and is caused by mutations in the AIPL1, CEP290, CRB1, CRX, GDF6, GUCY2D, IFT140, IMPDH1, IQCB1, KCNJ13, LCA5, LRAT, NMNAT1, RD3, RDH12, RPE65, RPGRIP1, SPATA7 and TULP1 genes. Clinical diagnosis involves ophthalmological examination and electrophysiological testing (electroretinography - ERG). The genetic test is useful for confirmation of diagnosis, differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Francesca Fanelli, Tommaso Beccari, Munis Dundar, Falsini Benedetto and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for gyrate atrophy of the choroid and retina (GACR). GACR is inherited in an autosomal recessive manner, and has a prevalence of 1/50000 in Finland. In the international literature there are approximately 200 biochemically confirmed cases. GACR is caused by mutations in the OAT gene. Clinical diagnosis involves ophthalmological examination, electrophysiological testing (electroretinography - ERG), coherence tomography and assay of ornithine levels in body fluids. The genetic test is useful for confirming diagnosis, as well as for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Vincenza Precone, Tommaso Beccari, Munis Dundar, Benedetto Falsini and Matteo Bertelli

Abstract

The main constituents of the genus Sideritis are various terpenoids, sterols, coumarins, flavonoid aglycones and glycosides. Sideritis species have been traditionally used as infusions or flavoring agents and in medicine as anti-inflammatory, antiulcer, antimicrobial, antioxidant, antispasmodic and analgesic agents. This paper includes the following sections: Introduction, Description and distribution of Sideritis spp, Pharmacological effects, Toxicity tests, Rationale for use of Sideritis spp. in ophthalmology and Conclusions. The aim is to provide a comprehensive overview on the botanical, phytochemical and pharmacological aspects of the genus Sideritis, and to establish the scientific basis of its pharmacological use. New approaches to using officinal plants have recently yielded significant results. The paper also reviews this information and provides a critical view on the options for exploiting the potential of Sideritis spp. in ophthalmology.

Open access

Andi Abeshi, Francesca Fanelli, Tommaso Beccari, Munis Dundar, Benedetto Falsini and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of the genetic test for central areolar choroidal dystrophy (CACD). CACD is mostly inherited in an autosomal dominant manner. Transmission is rarely autosomal recessive. Overall prevalence is currently 1-9 per 100 000. CACD is caused by mutations in the PRPH2 and GUCY2D genes. Clinical diagnosis is based on clinical findings, ophthalmological examination, fluorescein angiography, electroretinography (showing cone dystrophy) and stereo fundus photography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Carla Marinelli, Tommaso Beccari, Munis Dundar, Benedetto Falsini and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for ocular albinism and oculocutaneous albinism. Ocular albinism has X-linked recessive inheritance, with a prevalence that varies from 1/40000 to 1/1000000, and is caused by mutations in the GPR143 and CACNA1F genes. Oculocutaneous albinism has autosomal recessive inheritance, with an overall prevalence of 1/17000, and is caused by mutations in the TYR, OCA2, TYRP1, SLC45A2, SLC24A5 and C10orf11 genes. Clinical diagnosis involves ophthalmological examination, testing of visually evoked potentials (VEP) and electrophysiological testing (ERG). The genetic test is useful for confirming diagnosis, differential diagnosis, for couple risk assessment and access to clinical trials.