Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Benedek Kerekes x
Clear All Modify Search
Open access

Tamás Antal, László Sikolya and Benedek Kerekes

Abstract

The effect of freezing rate on the quality of dried Jonagold and Idared was studied. Apple slices underwent various pre-treatments, i.e. freezing in household freezer (freezing rate: 0,5 °C/min), contact plate freezing (2 °C/min) and vacuum-freezing (3 °C/min). The quality of the freeze dried product was then evaluated in terms of water activity, hardness, color and rehydration. The freezing in household freezer (slow freezing rate) significantly reduces the duration of the freeze drying process and consequently the process costs. The slow freezing rate allows the growth of large ice crystals at the beginning of the freeze-drying process, this fact should consequently lead to larger pores and injured cell walls and thus to shorter freeze drying time. Quality of the freezing in household freezer product was assessed as higher than the quality of the other freezing pre-treated material. Slow freezing rate resulted softer texture and higher rehydration capacity, than that of other pre-treated samples. In all cases, slow freezing lead to lower final moisture content, total color difference and water activity.

Open access

Tamás Antal, László Sikolya and Benedek Kerekes

Abstract

The effect of freezing rate on the quality of dried Jonagold and Idared (Malus domestica Borkh.) was studied. Apple slices underwent various pre-treatments, i.e. freezing in household freezer (freezing speed/rate: 0,5◦C/min), contact plate freezing (2◦C/min) and vacuumfreezing (3◦C/min). The quality of the freeze-dried product was then evaluated in terms of water activity (aw), hardness, color and rehydration. The texture and color experiments were carried out with texture analyser and colorimeter. The aw of apple slices was measured by aw apparatus. It was found that drying time was influenced by freezing rate. The freezing in household freezer (slow freezing rate) significantly reduces the duration of the freeze-drying process and consequently the process costs. The slow freezing rate allows the growth of large ice crystals at the beginning of the freeze-drying process; this fact should consequently lead to larger pores and injured cell walls and thus to shorter freeze-drying time. Quality of the freezing in household freezer product was assessed as higher than the quality of the other freezing pre-treated material. Slow freezing rate resulted softer texture and higher rehydration capacity than that of other pre-treated samples. In all cases, slow freezing speed lead to lower final moisture content, total color difference and water activity. Freeze-dried samples prepared with higher freezing rates (3◦C/min) were the most white in color because small pores, originated by sublimation of small ice crystals formed by fast freezing.