Search Results

1 - 7 of 7 items

  • Author: Beata Łabaz x
Clear All Modify Search
Geneza, Właściwości i Klasyfikacja Czarnych Ziem w Polsce

Streszczenie

Czarne ziemie, w randze osobnej j ednostki, wyodrębnione zostały przez Miklaszewskiego ze względu na ich poba-giennągenezę, podmokłość oraz specyficzny typ „kwaśnej” próchnicy. Z czasem zaczęto określać tym mianem także inne podmokłe gleby z głębokim poziomem próchnicznym o różnej genezie: (1) czarne ziemie pojeziorne (pobagienne), (2) czarne ziemie błotne (z przeobrażenia gleb torfowo- i torfiastoglej owych), (3) czarne ziemie deluwialne, (4) czarne ziemie ukształtowane w procesie werty-lizacji, (5) czarne ziemie powstałe w efekcie zwiększenia wilgotności czarnoziemów łąkowo-leśnych, (6) poligenetyczne czarne ziemie z poziomem iluwiacji iłu. Klasyfikacja gleb o tak zróżnicowanej genezie musi opierać się na wspólnych kryteriach morfologicznych, to j est zgodnie z trendem wyznaczonym przez systematyki gleb Polski z lat 1989 i 2011. Jednak przynależność do czarnych ziem nie zawsze jest jednoznaczna, ze względu na nieprecyzyjne rozgraniczenie w punktach stycznych z pokrewnymi glebami, w tym z czarnoziemami (intensywność oglejenia), madami i glebami deluwialnymi (stratyfikacja materiału macierzystego i/lub poziomu mollic), vertisolami (obecność poziomów mollic i vertic) oraz glebami murszastymi (brak różnic w kryteriach diagnostycznych). Ponadto, uzupełnienia wymagają charakterystyki czarnych ziem pod kątem rodzaju oglejenia (gruntowego oraz opadowego), rodzaju węglanów (wtórnych i pierwotnych) oraz obecności poziomu diagnostycznego anthric.

Open access
Humus Substances of Forest Phaeozems and Gleysols in Dolina Baryczy Landscape Park

Związki Próchniczne Czarnych Ziem Leśnych w Parku Krajobrazowym "Dolina Baryczy"

Open access
Anthropogenic transformation of soils in the Barycz valley – conclusions for soil classification / Antropogeniczne przekształcenia gleb w Dolinie Baryczy - wnioski dotyczące klasyfikacji gleb

Abstract

Large-scale river regulation, drainage and intense farming in the Barycz valley initiated in 17th century activated a transformation of the initial alluvial and swamp-alluvial soils. Soils on the Holocene flooded terraces have deep, acid humus horizons (umbric) and gleyic properties at shallow depth, but have no stratification of parent material to a depth of 100 cm. Despite the location in the floodplain, soils cannot be classified as black-earth alluvial soils (mady czarnoziemne) using the criteria of Polish soil classification (2011). The soils on the Pleistocene non-flooded terraces have a deep, base-saturated humus horizon (mollic) and gleyic properties in the lower part of soil profile, which allows to classify them as the black earths (czarne ziemie). Prominent stratification of the parent material well preserved in these soils has no influence on their classification (due to the age sediments). Almost all humus horizons of these soils meet the definition of anthric characteristics, and more than half of the studied soils can be classified as culturozemic soils - rigosols - which emphasises the important role of man in the transformation and gaining of morphological features of these soils. The lack of precise criteria for identifying soil types in the chernozemic order of the Polish soil classification (2011) causes difficulties in the classification of soils on the river terraces, in particular, in distinguishing between black-earth alluvial soils and black earths.

Open access
Relationships between soil pH and base saturation – conclusions for Polish and international soil classifications

Abstract

Taking into account the fact that (a) measurement of the cation exchange capacity and base saturation is practically unavailable in the field, that formally makes impossible the reliable field classification of many soils, (b) base saturation is measured or calculated by various methods those results significantly differ, (c) base saturation and soil pH are highly positively correlated, it is suggested to replace the base saturation with pHw (measured in distilled/deionized water suspension) in the classification criteria for diagnostic horizons and soil units/subunits, both in the Polish Soil Classification and FAO-WRB. Based on statistical analysis of 4500 soil samples, the following pHw values are recommended instead of 50% base saturation: pHw <5.5 for umbric and pHw ≥5.5 for the mollic horizon, and for Chernozems, Kastanozems, Phaeozems (directly) and Umbrisols (indirectly). Furthermore, the pHw <4.7 may feature the Dystric qualifier in mineral soils and respective Reference Soil Groups of WRB; while the pHw ≥4.7 may feature the Eutric qualifier. The distinction between subtypes of the brown soils in the Polish Soil Classification may base on the pHw 4.7 or 5.0, but using different requirements of pH distribution in the depth control section. The replacement of the base saturation with pH refers to the formal soil classification only, and does not exclude the use of base saturation for professional soil characteristics.

Open access
On the Specifics of Podzols in Mountain Areas

O Specyfice Bielic Górskich

Open access
Vertisols properties and classification in relation to parent material differentiation near Strzelin (SW Poland)

Abstract

Vertisols are characterized by high content of clay fraction that affects their specific morphological and physical features. The shrink-swell phenomena of clayey materials under specific moisture regime cause formation of cracks, wedge-shaped structural aggregates and slickensides on aggregate surfaces. It was formerly believed that these soils can be found only in tropical/subtropical zones, thus Vertisols have not been expected to form under temperate climate of Central Europe. As a result, Vertisols are insufficiently recognized and documented on soil maps in Poland, including the Lower Silesia region. The aim of this study was to examine soils developed on clayey parent materials near Strzelin, focusing on their morphology, properties and classification issues. There was confirmed that soils developed from Neogene clays have vertic and mollic horizon, accompanied by stagnic or gleyic properties. However, not all soils fulfil the criteria for Vertisols due to the presence of surface or subsurface coarser-textured (sandyor silty-textured) layers. Native differentiation of parent material and geomorphological processes were found the main factors, which control the spatial mosaic of Vertisols and black earths (Chernozems or Phaeozems).

Open access
Polish Soil Classification, 6th edition – principles, classification scheme and correlations

Abstract

The sixth edition of the Polish Soil Classification (SGP6) aims to maintain soil classification in Poland as a modern scientific system that reflects current scientific knowledge, understanding of soil functions and the practical requirements of society. SGP6 continues the tradition of previous editions elaborated upon by the Soil Science Society of Poland in consistent application of quantitatively characterized diagnostic horizons, properties and materials; however, clearly referring to soil genesis. The present need to involve and name the soils created or naturally developed under increasing human impact has led to modernization of the soil definition. Thus, in SGP6, soil is defined as the surface part of the lithosphere or the accumulation of mineral and organic materials permanently connected to the lithosphere (through buildings or permanent constructions), coming from weathering or accumulation processes, originated naturally or anthropogenically, subject to transformation under the influence of soil-forming factors, and able to supply living organisms with water and nutrients. SGP6 distinguishes three hierarchical categories: soil order (nine in total), soil type (basic classification unit; 30 in total) and soil subtype (183 units derived from 62 unique definitions; listed hierarchically, separately in each soil type), supplemented by three non-hierarchical categories: soil variety (additional pedogenic or lithogenic features), soil genus (lithology/parent material) and soil species (soil texture). Non-hierarchical units have universal definitions that allow their application in various orders/types, if all defined requirements are met. The paper explains the principles, classification scheme and rules of SGP6, including the key to soil orders and types, explaining the relationships between diagnostic horizons, materials and properties distinguished in SGP6 and in the recent edition of WRB system as well as discussing the correlation of classification units between SGP6, WRB and Soil Taxonomy.

Open access