Search Results

1 - 4 of 4 items

  • Author: Barbara Kalisz x
Clear All Modify Search
Effect of Municipal Sewage Sludge under Salix Plantations on Dissolved Soil Organic Carbon Pools / Wpływ Osadów Ściekowych Na Plantacjach Salix Na Zawartość Węgla Rozpuszczonego W Glebie

Abstract

Labile fractions of organic matter can rapidly respond to changes in soil and they have been suggested as sensitive indicators of soil organic matter. Two labile fractions of organic carbon in the soils amended with fresh municipal sewage sludge in two rates (equivalent of 60 kg P ha-1 and 120 kg P ha-1) were studied. Soils under studies were overgrown with Salix in Germany, Estonia and Poland. In Polish soils application of sewage sludge increased the content of both labile organic carbon fractions (KMnO4-C and HWC) for a period of one year. Estonian soils were stable and no distinct changes in labile organic carbon fractions occurred.

Open access
Mineral matter composition of drained floodplain soils in north-eastern Poland

Abstract

Soils in two river valleys (Rozoga and Omulew) in north-eastern Poland were investigated. The valleys are located on a sandy outwash plain formed during the Vistulian (Weichelian) Glaciation. The soils are drained, used as meadows and classified as Fluvic Umbric Gleysol, Fluvic Mollic Gleysol, and Eutric Fluvic Histic Gleysol (IUSS Working Group WRB 2015). The aim of the study was to identify the composition of mineral matter and to determine the types of clay minerals and intermediate stages of clay minerals by means of the X-ray diffraction (XRD). The studied floodplain soils are rich in organic matter and contain considerable mineral alluvial admixtures. The content of clay fraction (< 2.0 μm) is low (0.02–5.61% of total mineral matter). Higher content of clay fraction was noted in soils with elevated content of organic matter, which can be evidence of simultaneous accumulation of both components. In deeper depressions occurring in river valleys (oxbow lakes), a specific deposit termed silty telmatic mud (16–24% TOC, 50–75% silt, 3.1–5.6% clay fraction content) was accumulated. On the other hand, in shallow depressions, a muddy deposit was accumulated (5.7–7.7% TOC, sandy texture). The main identified clay minerals were smectite, vermiculite, illite and kaolinite as well as variety of mixed-layer clays. Alluvial clay admixture in studied soil formations showed mineralogical similarity to typical floodplain mineral soils (Fluvisols). Mineral fraction of studied soils is mostly of allochthonous origin.

Open access
Effect of microbial UGmax enricher on soil physical and water retention properties

Abstract

The paper presents the impact of UGmax enricher on soil physical and water retention properties. The experiment was established in 2005 in a 2 ha field 9 km from Lidzbark Warmiński in the village of Budniki. The studied soils were classified as Cambisols and Luvisols (IUSS Working Group WRB 2015), and they were formed from glaciolimnic deposits. Soil bulk density, soil particle density, texture, total porosity and water retention properties using low and high-pressure chambers were determined. The use of UGmax enricher on loamy soils used as arable lands in temperate climate of north-eastern Poland caused significant decrease of soil bulk density, increase of available water capacity and readily available water capacity. Statistically significant differences between examined soil properties were observed in most studied years.

Open access
Sediment origin and pedogenesis in the former mill pond basin of Turznice (north-central Poland) based on magnetic susceptibility measurements

Abstract

This paper aims to assess the usefulness of magnetic susceptibility measurements in pedological studies of mill pond sediments. The study area includes the former Turznice mill pond basin located in the south-eastern part of the Grudziądz Basin. Four soil profiles were selected within the transect located along the longitudinal axis of the basin. The following soil properties were determined in the collected samples: bulk density, particle size distribution, pH, content of carbonates, approximate content of organic matter (LOI), total organic carbon (TOC), total nitrogen (Nt), and the pseudo-total contents of metals (Fe, Mn, Cu, Zn, Pb, Ni, Cd). The obtained results were correlated with the specific (mass) magnetic susceptibility (χ). This study revealed that the variability of the soil cover in the basin was driven by different sedimentation conditions. The different composition of natural terrace deposits versus mill pond sediments has been well reflected in the magnetic properties. However, the possibility cannot be excluded that a pedogenic (gleyic) process is the key factor causing the vertical variability of magnetic properties in studied soils.

Open access