Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Bao-Quan Fu x
Clear All Modify Search
Open access

Lu-Lu Wang, Shi-Ying Lu, Pan Hu, Bao-Quan Fu, Yan-Song Li, Fei-Fei Zhai, Dan-Di Ju, Shi-Jun Zhang, Bing Su, Yu Zhou, Zeng-Shan Liu and Hong-Lin Ren

Abstract

Introduction: Peroxiredoxin 6 (Prdx6) is a bifunctional protein with glutathione peroxidase activity and phospholipase A2 activity. Previous studies have shown a significant positive correlation between the intracellular survival ability of Brucella and Prdx6. Here, the Prdx6 enzyme with a single activity was constructed to facilitate study of the relationship between the single function of Prdx6 and Brucella infection.

Material and Methods: The target open reading frame (ORF) DNAs of Prdx6 with a single active centre were prepared using gene splicing by overlap extension PCR (SOE-PCR), and the recombinant eukaryotic expression plasmids inserted by Prdx6 with the single activity centre were constructed and transfected into murine Raw264.7 macrophages. The glutathione peroxidase activity and phospholipase A2 activity of the constructed Prdx6 were examined.

Results: The core centres (Ser32 and Cys47) of Prdx6 were successfully mutated by changing the 94th nucleotide from T to G and the 140th nucleotide from G to C in the two enzyme activity cores, respectively. The constructed recombinant plasmids of Prdx6 with the single active centre were transfected into murine macrophages showing the expected single functional enzyme activity, which MJ33 or mercaptosuccinate inhibitors were able to inhibit.

Conclusion: The constructed mutants of Prdx6 with the single activity cores will be a benefit to further study of the biological function of Prdx6 with different enzyme activity.

Open access

Nan-Nan Liu, Zeng-Shan Liu, Shi-Ying Lu, Pan Hu, Ying Zhang, Bao-Quan Fu, Yan-Song Li, Yu Zhou, Yu Zhang and Hong-Lin Ren

Abstract

Introduction: Peroxiredoxin 6 (Prdx6) is a bifunctional protein and a unique 1-Cys Prdx of the peroxiredoxin family. The expression and regulation of Prdx6 are implicated in numerous physiological and pathological processes.

Material and Methods: Eight stepwise truncated DNA fragments obtained from the 5′-flank region of the Prdx6 gene were prepared and subcloned into the pSEAP2-Enhancer vectors. To investigate the transcriptional activity of the truncated DNA fragments, the recombinant plasmids were transfected into the COS-1 cells and the transcriptional activity was measured via assaying the expression of the reporter gene of the secreted alkaline phosphatase.

Results: A 3.4 kb 5′-upstream flank region of the Prdx6 gene was cloned and sequenced. The region from −108 nt to −36 nt of the 5′-flanking region of the Prdx6 gene contained basal transcriptional activity.

Conclusion: This result provides the basis for further studies on the gene regulation of the Prdx6-mediated biological processes and on screening for the transacting factors that interact with cis-acting elements of the Prdx6 gene promoter.