Search Results

You are looking at 1 - 4 of 4 items for

  • Author: B. Szczucka-Lasota x
Clear All Modify Search
Open access

B. Szczucka-Lasota and J. Piwnik

Abstract

Thermally spraying with micro-jet cooling is an innovate technology. It is possible to get fine dispersive structure of coatings during the shorter time in comparable to the classical high velocity oxygen fuel process (HVOF). It corresponds with good corrosion-erosion properties of structure. In the paper the parameters of the spraying with micro-jet cooling process are presented. The selected properties of coatings obtained by hybrid method are presented. The results of wear tests for hybrid and HVOF coating are compared. Results of investigation are very optimistic. The presented technology should be adapted to the actual production of protective coating for machines and construction working in wear conditions.

Open access

B. Szczucka-Lasota

Abstract

In this paper, the hybrid method connects the ultrasonic spraying method with a injector of complex cooling micro-jet system is presented. The use of properly constructed injector allows for local and selective cooling of the coating structure immediately after spraying process. The construction of injector is the subject of patent in Polen. The presented new technology gives practical possibility of control of coatings structure. This is the kind of positive feedback between the technology process and obtained product (the quality of the process increases the quality of the final product). The initial experimental investigations, presented in this paper, show, that the obtained coatings structure is: fine-dispersion of the grain, with a lower porosity, good compactness and adhesion to the substrate.

Open access

B. Szczucka-Lasota, T. Węgrzyn, Z. Stanik, J. Piwnik and P. Sidun

Abstract

The innovative technology, like thermal spraying with a micro-jet cooling is one of the important modification of classical ultrasonic spraying methods. Using of micro-stream with gases like argon or nitrogen allows to cool the coating immediately after spraying, and thereby reduce the time of transition during the injection of each layer. As a result of the process, the fine dispersive structure of coatings is obtained during the shorter time in comparable to the classical high velocity oxygen fuel process (HVOF). The parameter of process and the type of stream equipment determine the quality of the obtained structure and thermal stress in the coating. The article presents the relationship between selected parameters of hybrid process and properties of the coatings. The presented technology should be adapted to the actual production of protective coating for machines and construction working in wear conditions.

Open access

W. Tarasiuk, A.I. Gordienko, A.T. Wolocko, J. Piwnik and B. Szczucka-Lasota

The paper presents results of research tribological properties laser hardened steel 42CrMo4. Parameter influencing on the quality of the hardened surface was laser head speed. The study was conducted on friction tester pin-on-disc type T-11, and a counter sample disc was silicate. Parameter determining the quality of the surface layer is the intensity of wear. Based on the results we obtain information about the laser head speed to temper steel 42CrMo4 so as to maintain a high resistance to wear.