Search Results

You are looking at 1 - 10 of 14 items for

  • Author: B. Pisarek x
Clear All Modify Search
Open access

B. Pisarek

Effect of Annealing Time for Quenching CuAl7Fe5Ni5W2Si2 Bronze on the Microstructure and Mechanical Properties

This paper presents the influence of annealing time 30, 60 and 120 min at 1000°C for quenching CuAl7Fe5Ni5W2Si2 bronze in 10% water solution of NaCl, on the microstructure and mechanical properties. The presented results concern the species newly developed aluminum-iron-nickel bronze, with additions W and Si.

In order to determine changes in the microstructure of the hardened bronze metallographic studies were performed on cylindrical samples of diameter 10 mm, on the metallographic microscope with digital image analysis, X-ray phase analysis, EDX point with the digital recording on the computer. Specified percentage of the microstructure of martensite and bainite, participation of proeutectoid α phase in the microstructure, grain size of former β phase, the amount of dissolved κ phase.

It was found that in the microstructure of bronze in the cast state, there are a number of intermetallic phases of κ type. At interphase boundaries of primary intermetallic faceted precipitates, especially rich in tungsten (IM_W), nucleate and grow dendritic primary intermetallic κI phases, with chemical composition similar to the type of Fe3Si iron silicide.

Dissolved, during the heating, in the β phase are all the intermediate phase included in the microstructure, with the exception of primary intermetallic phases of tungsten and κI. Prolongation of the isothermal annealing causes coagulation and coalescence of primary phases. In microstructure of the bronze after quenching obtained the α phase precipitation on the grain boundary of secondary β phase, coarse bainite and martensite, for all annealing times. With the change of annealing time are changed the relative proportions of individual phases or their systems, in the microstructure. In the microstructure of bronze, hold at temperature of 1000°C for 60 min, after quenching martensitic microstructure was obtained with the primary phases, and the least amount of bainite.

Open access

P. Just and B.P. Pisarek

Abstract

Small additions of Cr, Mo and W to aluminium-iron-nickel bronze are mostly located in phases κi (i=II; III; IV),and next in phase α (in the matrix) and phase γ2. They raise the temperature of the phase transformations in aluminium bronzes as well as the casts’ abrasive and adhesive wear resistance. The paper presents a selection of feeding elements and thermal treatment times which guarantees structure stability, for a cast of a massive bush working at an elevated temperature (650-750°C) made by means of the lost foam technology out of composite aluminium bronze. So far, there have been no analyses of the phenomena characteristic to the examined bronze which accompany the process of its solidification during gasification of the EPS pattern. There are also no guidelines for designing risers and steel internal chill for casts made of this bronze. The work identifies the type and location of the existing defects in the mould’s cast. It also proposes a solution to the manner of its feeding and cooling which compensates the significant volume contraction of bronze and effectively removes the formed gases from the area of mould solidification. Another important aspect of the performed research was establishing the duration time of bronze annealing at the temperature of 750°C which guarantees stabilization of the changes in the bronze microstructure - stabilization of the changes in the bronze HB hardness.

Open access

B.P. Pisarek

Abstract

With the increase in wall thickness of the casting of iron-nickel-aluminium-bronze, by the reduction of the cooling rate the size of κII phase precipitates increases. This process, in the case of complex aluminium bronzes with additions of Cr, Mo and W is increased. Crystallization of big κII phase, during slow cooling of the casting, reduces the concentration of additives introduced to the bronze matrix and hardness. Undertaken research to develop technology of thick-walled products (g> 6 mm) of complex aluminium bronzes. Particular attention was paid to the metallurgy of granules. As a result, a large cooling speed of the alloy, and also high-speed solidification casting a light weight of the granules allows: to avoid micro-and macrosegregation, decreasing the particle size, increase the dispersion of phases in multiphase alloys. Depending on the size granules as possible is to provide finished products with a wall thickness greater than 6 mm by infiltration of liquid alloy of granules (composites). Preliminary studies was conducted using drip method granulate of CuAl10Fe5Ni5 bronze melted in a INDUTHERM-VC 500 D Vacuum Pressure Casting Machine. This bronze is a starting alloy for the preparation of the complex aluminium bronzes with additions of Cr, Mo, W and C or Si. Optimizations of granulation process was carried out. As the process control parameters taken a casting temperature t (°C) and the path h (mm) of free-fall of the metal droplets in the surrounding atmosphere before it is intensively cooled in a container of water. The granulate was subjected to a sieve analysis. For the objective function was assume maximize of the product of Um*n, the percentage weight “Um” and the quantity of granules ‘n’ in the mesh fraction. The maximum value of the ratio obtained for mesh fraction a sieve with a mesh aperture of 6.3 mm. In the intensively cooled granule of bronze was identified microstructure composed of phases: β and fine bainite (α+β′+β′1) and a small quantity of small precipitates κII phase. Get high microhardness bronze at the level of 323±27,9 HV0,1.

Open access

B. P. Pisarek

Abstract

According to the analysis of the current state of the knowledge shows that there is little information on the process of phase transformations that occur during the cooling Cu-Al-Fe-Ni hypo-eutectoid bronzes with additions of Cr, Mo and/or W, made additions individually or together, for the determination of: the type of crystallizing phases, crystallizing phases, order and place of their nucleation. On the basis of recorded using thermal and derivative analysis of thermal effects phases crystallization or their systems, analysis of the microstructure formed during crystallization - observed on the metallographic specimen casting ATD10-PŁ probe, analysis of the existing phase equilibrium diagrams forming elements tested Cu-Al-Fe-Ni bronze, with additions of Cr, Mo, W and/or Si developed an original model of crystallization and phase transformation in the solid state, the casting of high quality Cu-Al-Fe-Ni bronze comprising: crystallizing type phase, crystallizing phase sequence, place of nucleation.

Open access

C. Rapiejko, B. Pisarek and T. Pacyniak

Abstract

The paper presents the results of the investigation of the effect of Cr and/or V alloy additions on the microstructure and mechanical properties of the magnesium AM60 alloy. The examinations are performed within the frames of a project aiming at the elaboration of an experimental and industrial technology of producing constructively complex elements of machines and devices made of magnesium alloys with the method of investment casting. It has been proven that small numbers of Cr and V alloy additions improve the strength properties: Rm, A%, and the hardness HB of the obtained casts. The experimental casts were made in ceramic molds.

Open access

B.P. Pisarek, D. Kołakowski and T. Pacyniak

Abstract

For the die casting conditions of aluminium bronzes assumed based on the literature data, a thick-walled bush was cast, made of complex aluminium bronze (Cu-Al-Fe-Ni-Cr). After the cast was removed from the mould, cracks were observed inside it. In order to identify the stage in the technological production process at which, potentially, the formation of stresses damaging the continuity of the microstructure created in the cast was possible (hot cracking and/or cold cracking), a computer simulation was performed. The article presents the results of the computer simulation of the process of casting the material into the gravity die as well as solidifying and cooling of the cast in the shape of a thick-walled bush. The simulation was performed with the use of the MAGMA5 program and by application of the CuAl10Ni5,5Fe4,5 alloy from the MAGMA5 program database. The results were compared with the location of the defects identified in the actual cast. As a result of the simulation of the die-casting process of this bush, potential regions were identified where significant principal stresses accumulate, which can cause local hot and cold cracking. Until now, no research has been made of die-cast aluminium bronzes with a Cr addition. Correlating the results of the computer simulation validated by the analysis of the actual cast made it possible to clearly determine the critical regions in the cast exposed to cracking and point to the causes of its occurrence. Proposals of changes in the bush die casting process were elaborated, in order to avoid hot tearing and cold cracking. The article discusses the results of preliminary tests being a prologue to the optimization of the die-casting process parameters of complex aluminium bronze thick-walled bushs.

Open access

B.P. Pisarek, C. Rapiejko, R. Święcik and T. Pacyniak

Abstract

The work presents the results of the investigations of the effect of inhibitors coated on the internal walls of a ceramic mould on the quality of the obtained casts made of the AM60 alloy containing additions of chromium and vanadium. In order to reduce the reactivity of magnesium alloy cast by the technology of investment casting with the material of the mould and the ambient atmosphere, solid inhibitors were applied in the form of a mixture of KBF4 and H3BO3 after the stage of mould baking and before the mould’s being filled with the liquid alloy. For the purpose of examining the effect of the inhibitors on the surface quality of the obtained casts, profilometric tests were performed and the basic parameters describing the surface roughness, Ra, Rz and Rm, were determined.

Open access

B.P. Pisarek, D. Kołakowski and T. Pacyniak

Abstract

Metallographic investigations and a computer simulation of stresses in a gravity die-casting bushing were performed. Simulation of the casting process, solidification of the thick-walled bushing and calculations of the stress was performed using MAGMA5.3 software. The size variability of phases κII affecting the formation of phase stresses σf, depending on the location of the metallographic test area, was identified. The distribution of thermal σt and shrinkage stresses σs, depending on the location of the control point SC in the bushing's volume, was estimated. Probably the nature of these stresses will change slightly even after machining. This can cause variations in operating characteristics (friction coefficient, wear). Due to the strong inhomogeneity of the stress distribution in the bushing's casting, it is necessary to perform further tests of the possibility to conduct thermal treatment guaranteeing homogenization of the internal stresses in the casting, as well as to introduce changes in the bushing' s construction and the casting technology. The paper presents the continuation of the results of research aimed at identifying the causes of defects in the thick-walled bushing, die-casting made of CuAl10Fe5Ni5Cr aluminium bronze.

Open access

B. P. Pisarek, C. Rapiejko, T. Szymczak and T. Pacyniak

Abstract

The study presents the results of the investigations of the effect of Cu, Ni, Cr, V, Mo and W alloy additions on the microstructure and mechanical properties of the AlSi7Mg0.3 alloy. The examinations were performed within a project the aim of which is to elaborate an experimental and industrial technology of producing elements of machines and devices complex in their construction, made of aluminium alloys by the method of precision investment casting. It was demonstrated that a proper combination of alloy additions causes the crystallization of complex intermetallic phases in the silumin, shortens the SDAS and improves the strength properties: Rm, Rp0.2,HB hardness. Elevating these properties reduces At, which, in consequence, lowers the quality index Q of the alloy of the obtained casts. Experimental casts were made in ceramic moulds preliminarily heated to 160 °C, into which the AlSi7Mg0.3 alloy with the additions was cast, followed by its cooling at ambient temperature. With the purpose of increasing the value of the quality index Q, it is recommended that the process of alloy cooling in the ceramic mould be intensified and/or a thermal treatment of the casts be performed (ageing)(T6).

Open access

C. Rapiejko, B. Pisarek, E. Czekaj and T. Pacyniak

Abstract

The work presents the test results of the crystallisation and cooling of magnesium alloys: AM60 and AZ91, with the use of the TDA method. The tested alloys were cast into ceramic shells heated up to 180°C, produced according to the technology of the shell production in the investment casting method. The TDA method was applied to record and characterize the thermal effect resulting from the phase transformations occurring during the crystallisation of magnesium alloys. The kinetics and dynamics of the thermal processes of the crystallisation of AM60 and AZ91 in the ceramic shells were determined. Metallographic tests were performed with the use of an optical microscope as well as scanning microscopy, together with the EDS chemical analysis of the phases present in the tested casts. A comparison of these test results with the thermal effect recorded by way of the TDA method was made.